## OPERATIONS RESEARCH

## LECTURE EIGHT <br> Simplex method (2)

## Lecturer: Dr. Emily Roche

## INTRODUCTION

This lecture will focus on solving linear programming problems using Simplex method.

## Intended learning outcomes

At the end of this lecture, you will be able to solve linear programming problems using the simplex method.

## References

These lecture notes should be supplemented with relevant topics from the books listed in the Bibliography at the end of the lecture

## Example 1

Use the simplex method to find the optimal solution to the linear programming model below

Maximize $x_{0}=9 x_{1}+10 x_{2}$

$$
x_{1}+2 x_{2} \leq 8
$$

Subject to $5 x_{1}+2 x_{2} \leq 16$

$$
x_{1}, x_{2} \geq 0
$$

## Solution

In standard form this model becomes:
Maximize $x_{0}-9 x_{1}-10 x_{2}=0$

$$
x_{1}+2 x_{2}+s_{1}=8
$$

Subject to $5 x_{1}+2 x_{2}+s_{2}=16$

$$
x_{1}, x_{2}, s_{1}, s_{2} \geq 0
$$

Then the initial tableau is:

| Basic solution | $x_{0}$ | $x_{1}$ | $x_{2}$ | $s_{1}$ | $s_{2}$ | Solution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{0}$ | 1 | -9 | -10 | 0 | 0 | 0 |
| $s_{1}$ | 0 | 1 | 2 | 1 | 0 | 8 |
| $s_{2}$ | 0 | 5 | 2 | 0 | 1 | 16 |

A starting basic solution can be obtained directly using the slack variables. This gives $s_{1}=8$ and $s_{2}=16$. Since all the non-basic variables $x_{1}$ and $x_{2}=0$. Also the objective function $x_{0}=0$.

## Note

- The column under $x_{0}$ contains a unit element support in the first row and zero elements otherwise
- The columns under $s_{1}$ and $s_{2}$ similarly contain unit elements in the second and third rows respectively.

Due to this arrangement, the right-hand side of the tableau yields the values of the starting solution. We shall be using this special structure of a starting tableau. Coefficient of the starting basic solution in the indicator row must be zero.

After all the above conditions, the entering variable is selected as a non-basic variable having the most negative indicator in the indicator row.

In the above example $x_{2}$ is the entering variable. One of the current basic variables $s_{1}$ or $s_{2}$ must leave the solution and become non-basic at zero level. A determination of the specific leaving variable is achieved by using feasibility condition.

We take the ratios of the values of the current basic variables excluding $x_{0}$, to the corresponding constraints coefficients of the entering variable. The leaving variable then corresponds to the least non-negative quotient. i.e.,

| Current basic solution | Ratio to coefficients of $x_{2}$ |
| :---: | :---: |
| $s_{1}=8$ | $\frac{8}{2}=4$ |
| $s_{2}=16$ | $\frac{16}{2}=8$ |

Hence $s_{1}$ becomes the leaving variable as $x_{2}$ enters the solution.

After identifying the entering variable $x_{2}$ and the leaving variable $s_{1}$, the next step is to modify the previous tableau to directly give the solution of the new basic variable. This is done by eliminating the entering variable ( $x_{2}$ in this example) from the indicator row (objective equation) and from all the constraint equations except where the leaving variable ( $s_{1}$ in this example) appears. This implies the objective equation will have only $x_{1}$ and $s_{1}$.

From the previous tableau

| Basic solution | $x_{0}$ | $x_{1}$ | $x_{2}$ | $s_{1}$ | $s_{2}$ | Solution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{0}$ | 1 | -9 | -10 | 0 | 0 | 0 |
| $s_{1}$ | 0 | 1 | 2 | 1 | 0 | 8 |
| $s_{2}$ | 0 | 5 | 2 | 0 | 1 | 16 |

The coefficient (2) of the entering variable corresponding to the minimum ratio is called the PIVOT element. For the right-hand side of the first constraint equation to yield the value of $x_{2}$, the whole equation must be divided by the pivot element ( $=2$ in this example). This row which is the pivot equation appears in the new tableau as follows

| Basic solution | $x_{0}$ | $x_{1}$ | $x_{2}$ | $s_{1}$ | $s_{2}$ | Solution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| $x_{2}$ | 0 | $\frac{1}{2}$ | 1 | $\frac{1}{2}$ | 0 | 4 |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

The elimination of $x_{2}$ from the $x_{0}$ equation and the second constraint equation is equivalent to creating zero coefficients for $x_{2}$ in these two equations.

This is done using the following row operations.

1. Multiply the new pivot equation by 10 and add the result to the $x_{0}$ equation.
2. Multiply the new pivot equation by -2 and add the results to the second constraint. This gives the new the new tableau which represents the start of the new iteration.

| Basic solution | $x_{0}$ | $x_{1}$ | $x_{2}$ | $s_{1}$ | $s_{2}$ | Solution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{0}$ | 1 | -4 | 0 | 5 | 0 | 40 |
| $x_{2}$ | 0 | $\frac{1}{2}$ | 1 | $\frac{1}{2}$ | 0 | 4 |
| $s_{2}$ | 0 | 4 | 0 | -1 | 1 | 8 |

This tableau reveals that the current tableau is non-optimal since the coefficient of $x_{1}$ in the indicator row is negative hence, applying the same conditions, $x_{1}$ should enter the solution.

The leaving variable is determined as follows

| Current basic solution | Ratio to coefficients of $x_{2}$ |
| :---: | :---: |
| $x_{2}=4$ | $\frac{4}{1 / 2}=8$ |
| $s_{2}=8$ | $\frac{8}{4}=2$ |

$s_{2}$ is the leaving variable.

The new tableau is therefore,

| Basic solution | $x_{0}$ | $x_{1}$ | $x_{2}$ | $s_{1}$ | $s_{2}$ | Solution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{0}$ | 1 | 0 | 0 | 4 | 1 | 48 |
| $x_{2}$ | 0 | 0 | 1 | $\frac{5}{8}$ | $-\frac{1}{8}$ | 3 |
| $x_{1}$ | 0 | 1 | 0 | $-\frac{1}{4}$ | $\frac{1}{4}$ | 2 |

Since all the coefficients in the indicator row are all positive, this is the optimal solution. Thus;

$$
x_{1}=2, \quad x_{2}=3, \quad s_{1}=s_{2}=0, \quad x_{0}=48
$$

The constraint whose slack variable is zero is the scarce or limited resource which is referred to as BINDING constraint.

The dual price of the binding constraint is the value of the slack variables in the indicator row of the final tableau.

## Example 2

Consider the following linear programming problem.

Maximize $x_{0}=3 x_{1}+2 x_{2}+5 x_{3}$
$\begin{array}{cc} & x_{1}+2 x_{2}+x_{3} \leq 430 \\ \text { Subject to } & 3 x_{1}+2 x_{3} \leq 460 \\ x_{1}+4 x_{2} \leq 420 \\ & x_{1} \geq 0, \quad x_{2} \geq 0, \quad x_{3} \geq 0\end{array}$
Find the optimal solution.

## Solution

Since there are three decision variables in this problem, the appropriate method for solving is the simplex method.

In standard form the model will be:

Maximize $x_{0}-3 x_{1}-2 x_{2}-5 x_{3}=0$

Subject to

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3}+s_{1}=430 \\
3 x_{1}+2 x_{3}+s_{2}=460 \\
x_{1}+4 x_{2}+s_{3}=420 \\
x_{1} \geq 0, \quad x_{2} \geq 0, \quad x_{3} \geq 0, \quad s_{1} \geq 0, \quad s_{2} \geq 0, \quad s_{3} \geq 0
\end{gathered}
$$

The initial tableau is

| Basic solution | $x_{0}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $s_{1}$ | $s_{2}$ | $s_{3}$ | Solution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{0}$ | 1 | -3 | -2 | -5 | 0 | 0 | 0 | 0 |
| $s_{1}$ | 0 | 1 | 2 | 1 | 1 | 0 | 0 | 430 |
| $s_{2}$ | 0 | 3 | 0 | 2 | 0 | 1 | 0 | 460 |
| $s_{3}$ | 0 | 1 | 4 | 0 | 0 | 0 | 1 | 420 |
|  |  |  |  |  |  |  |  |  |

## First iteration

$x_{3}$ is the entering variable. Taking ratios

| Current basic solution | Ratio to coefficients of $x_{2}$ |
| :---: | :---: |
| $s_{1}=430$ | $\frac{430}{1}=430$ |
| $s_{2}=460$ | $\frac{460}{2}=230$ |
| $s_{3}=420$ | $\frac{420}{0} \Rightarrow$ ignore |

$s_{2}$ is the leaving variable. The new tableau is

| Basic solution | $x_{0}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $s_{1}$ | $s_{2}$ | $s_{3}$ | Solution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{0}$ | 1 | $9 / 2$ | -2 | 0 | 0 | $5 / 2$ | 0 | 1150 |
| $s_{1}$ | 0 | $-1 / 2$ | 2 | 0 | 1 | $-1 / 2$ | 0 | 200 |
| $x_{3}$ | 0 | $3 / 2$ | 0 | 1 | 0 | $1 / 2$ | 0 | 230 |
| $s_{3}$ | 0 | 1 | 4 | 0 | 0 | 0 | 1 | 420 |

## Second iteration

$x_{2}$ is the entering variable. Taking ratios,

| Current basic solution | Ratio to coefficients of $x_{2}$ |
| :---: | :---: |
| $s_{1}=200$ | $\frac{200}{2}=100$ |
| $x_{3}=230$ | $\frac{230}{0} \Rightarrow$ ignore |
| $s_{3}=420$ | $\frac{420}{4}=105$ |

$s_{1}$ leaves the solution. The new tableau is

| Basic solution | $x_{0}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $s_{1}$ | $s_{2}$ | $s_{3}$ | Solution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{0}$ | 1 | 4 | 0 | 0 | 1 | 2 | 0 | 1350 |
| $x_{2}$ | 0 | $-1 / 4$ | 1 | 0 | $1 / 2$ | $-1 / 4$ | 0 | 100 |
| $x_{3}$ | 0 | $3 / 2$ | 0 | 1 | 0 | $1 / 2$ | 0 | 230 |
| $s_{3}$ | 0 | 2 | 0 | 0 | -2 | 0 | 1 | 20 |

This is the optimal solution since all the coefficients in the indicator row are non-negative.
The optimal solution is given by
$x_{1}=0, x_{2}=100, x_{3}=230, s_{1}=0, s_{2}=0, s_{3}=20$ and $x_{0}=1350$

## Bibliography

Lucey, T. (2002). Quantitative Techniques (6th ed.). Cengage Learning.
Taha, H. A. (2017). Operation Research An introduction (10th ed.). Prentice-Hall, Inc.

