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Course description
• The course begins with an introduction to logic and formal 

grammar where learners will do a recap on sets, logic and truth 
tables, sequences, relations and functions

• A coverage of finite state machines, Push Down automata and 
Turing Machines (The Church’s thesis) will culminate the study 
of various models of computation.

• Formal language and grammar will then follow to enable 
learners differentiate regular and context free languages. 

• An evaluation of the computability and complexity of practical 
computational problems which are the foundations of 
automata theory will then be done and the outcome will be 
problem description. 



Learning outcomes: 

Lecture 6: Deterministic and Non-Deterministic Finite 
Automata

At the end of the lecture the learner will be able to:

• Define Finite Automata.

• Describe Finite Automata formally.

• Differentiate Deterministic and Non-Deterministic 
Finite Automata



6.1 Finite Automata 

Introduction:

• A finite-state machine (finite automaton) is a 
simple, limited model of computation with a 
number of states and transitions.  

• Finite Automata are good models for computers 
with an extremely limited amount of memory.  

• Though the memory is limited, we interact with 
such computers all the time as they lie at the 
heart of various electromechanical devices. 



• An automaton is a mathematical model for a Finite State 
Machine (FSM). 

• A finite State Machine is a machine that, given an input of 
symbols, “jumps” or transitions through a series of states 
according to a transition function (which can be expressed as a 
table). 

• This transition function tells the automaton which state to go 
to next given a current state and a current symbol.  

• The input is read symbol by symbol, until it is consumed 
completely, after which, the automaton is said to have stopped. 

• Depending on the state in which the automaton stops, it’s said 
that the automaton either accepts or rejects the input.  

• The set of all the words accepted by an automaton is called the 
language accepted by the automaton. 



Example one: Automatic Door
• States: - Door is either open or closed

• Transitions: - Changes the door from one state to another, based on certain 
controls like a foot pad that once stepped on, senses that someone is 
standing nearby.

Front 
Pad

Rear
PadDOOR



The same machine can be illustrated using a state diagram as shown below: -

This behaviour of the door can be represented in a transition table as shown below:-

Actions 
(Transitions)

Both Front Rear Neither

States

Closed Open Open Open Closed

Open Open Open Open Closed

Open 

Neither

Closed 

Front, Rear, Both

Neither

Front, Rear, Both 



Example Two: Elevator Controller

• In an elevator controller a state may represent the 
floor the elevator is on and the inputs might be the 
signals received from the buttons. 

• This computer might need several bits to keep 
track of this information. 

Other examples:

• Controllers for various household appliances such 
as dish washers and electronic thermostats, as well 
as parts of digital watches and calculators are 
additional examples of computers with limited 
memories. The design of such devices requires 
keeping the methodology and terminology of finite 
automata in mind. 



FORMAL DEFINITION OF A FINITE AUTOMATON 

•Other than using state diagrams, we now define Finite 
automata formally. 

•Though state diagrams are easier to grasp we need the 
formal definition for two main reasons: -

i. A formal definition is precise – It resolves any 
uncertainties about what is allowed in a finite 
automaton. 

ii. Good notation provides a clear way to think and 
express thoughts 



• From lecture 1 we indicated that a list of five 
elements is called a 5-tuple. 

• The formal definition  of a finite automaton is a 5-
tuple consisting of five parts. 

i. A set of states 

ii. Input alphabet showing the allowed input 
symbols  

iii. Rules for going from one state to the other 
depending on the input symbol

iv. The start state and

v. A set of accept states– sometimes called final
states . 



The Transition Function

• We denote the transition function as δ (delta sign) 
to define the rules for moving. 

• If the finite automaton has an arrow from a state 
X to a state Y labeled with the input symbol 1, 
that means that, if the automaton is in state X 
when it reads a 1, it then moves to state Y. 

• We can indicate the same thing with the 
transition function by saying that δ(X, 1) = Y. 

• This notation is a kind of mathematical 
shorthand. 



Types of Automatons 

1. Deterministic Finite Automata (DFA) 

• This is an automaton in which each move (transition from 
one state to another) is uniquely determined by the current 
configuration. 

• If the internal state, input and contents of the storage are 
known, it is possible to predict the future behaviour of the 
automaton. 

• This is said to be Deterministic Finite Automaton (DFA), 
otherwise it is Non-Deterministic Finite Automaton (NFA). 

• An automaton whose output response is “Yes” or “No” is 
called an acceptor. 



The formal description of a DFA is a five-tuple 

•M= (Q,∑ (sigma sign) , δ (delta sign) , q0, F);
where: -

Q = Finite set of Internal States, 

∑= Finite Set of Symbols “Input Alphabet” ,

δ : Q X ∑→Q is the Transition Function 

q0∈Q is the Initial State 

F ⊆ Q is the Set of Final States 



• The input mechanism can move from left to right and 
reads exactly one symbol on each step. 

• The transition from one internal state to another is 
governed by the transition function (δ). 

• Example: if δ( q0, a) = q1, this means that if the DFA is in 
state “q0” and the current input symbol is “a”, then the 
DFA will go into state q1. 

• The start state is normally represented using an oval 
shape that has an arrow pointing into it from nowhere.  

• The final state is represented using a double 
circle/oval. 

• With a DFA, exactly one transition arrow exits every 
state for each possible input symbol. 



Example: Consider the following state diagram of a DFA M3, answer the 
questions presented about this machine: -

M3

a)What is the start state of M3? q1

b)What are the sets are of accept /Final states of 
M3? {q2} 

c) What sequence of states does M3 go through 
on input aabba? q1, q2, q3, q1, q1,q2

d) Does M3 accept the string aabb? Give a 
reason for your answer. q1, q2, q3, q1, q1, - No 
because it does not take us to the final state 
q2.

e) Does M3 accept the string string { } ? Give a 
reason for your answer. No it does not, 
given that we don’t have empty input into 
q2,  which is the accept state 



•So far in our discussion, every step of a 
computation follows in a unique way 
from the preceding step. 

•When the machine is in a given state and 
reads the next input symbol, we know 
what the next state will be – it is 
determined. We called this deterministic 
computation. 



2. Non-deterministic Finite Automata (NFA)

•Non-determinism is a useful concept 
with a great impact on the theory of 
computation. 

•In a non-deterministic machine, 
several choices may exist for the next 
state at any point and the machine 
therefore may have additional 
features. 



Example: - Consider the state diagram for an NFA 
machine N1 above. 

• We realize when the NFA, reads an input string, there 
are multiple ways to proceed. 

• Example: While in state q1, if the next symbol is a 1, 
the machine splits into multiple copies of it and 
follows all the possibilities in parallel.  

0, 1

, 0 ∈

0 1, 

q4
q3q1

1
q2

1

How does an NFA compute? 



How does an NFA compute? 

• If a state with a ∈ symbol on an exiting arrow 
is encountered, something similar happens. 

• Without reading any input, the machine splits 
into multiple copies, one following each of the 
exiting ∈-labeled arrows and one staying at the 
current state. 

• Then the machine splits non-deterministically 
as before.  



From this state diagram we can come up with a 
table showing three differences between DFA 
and NFA as follows: -



• Non- determinism may be viewed as a 
kind of parallel computation wherein 
several processes can be running 
concurrently. 

• When the NFA splits to follow several 
choices; this corresponds to a process
known as “forking” into several 
children each proceeding separately. 

• If at least one of these processes leads 
to an accept state then the entire 
computation accepts.



• Another way to think of a 
nondeterministic computation is as a tree 
of possibilities. 

• The root of the tree corresponds to the 
start of the computation. 

• Every branching point in the tree 
corresponds to a point in the computation 
at which the machine has multiple 
choices. 

• The machine accepts the computation if 
at least one of the computation branches 
ends in an accept state.  



Importance of NFA 

i. NFA may be much smaller than its 
deterministic counterpart, or its functioning 
may be easier to understand. 

ii. Non-determinism in finite automata is also a 
good introduction to non-determinism in 
more powerful computational models 
because finite automata are especially easy to 
understand.  

iii. Every NFA can be converted into an 
equivalent DFA and constructing NFAs is 
sometimes easier than directly constructing 
DFAs. 



Formal Definition of a Nondeterministic 
Finite Automaton (NFA) 

•The formal definition of an NFA is similar 
to that of a DFA. 

•Both have states, an input alphabet, a 
transition function, a start state and a 
collection of accept states. 

•However, they differ in one essential way: 
in the type of transition function. 



• Recall from Lecture 1 that a set Ε with no 
elements is called an empty set and it is denoted 
by {  } or ∅

• For the NFA, the transition function produces a 
set of possible next states.

• For any set Q we write the power set of Q as 
P(Q) to be the collection of all subsets of Q. 

• Here P(Q) is called the power set of Q. 

• For any input alphabet ∑ we write ∑∈ to be 
∑∪{∈}. 

• Now we can easily write the formal description 
of the type of the transition function in an NFA. 
It is δ: Q X  ∑∈→ P(Q). 



NFA Formal Definition
A Nondeterministic Finite Automaton is a 5-tuple 
M= (Q,∑, δ , q0, F); where: -

1. Q is a Finite set of Internal States 

2. ∑ is a Finite Set of Symbols “Input Alphabet” 

3. δ: Q X  ∑∈ → P (Q) is the transition symbol 

4. q0∈ Q is the initial state

5. F ⊆Q is the Set of Final/accept States 

• Recall that the formal definition precisely describes 
what we mean by a finite automaton.  



Example 1:

• Let A be the language consisting of all strings 
over {0, 1} containing a 1 in the third position 
from the end (e.g. 000100 is in A but 0011 is not). 
The following four-state NFA N2 recognizes A. 

, 1 0

0, 1

q4

q3q1

1
q 2

0, 1



One good way to view the computation 
of this NFA is to say that:-

•The machine stays in the start state q1
until it “guesses” that it is three places 
from the end. 

•At that point, if the input symbol is a 1, 
it branches to state q2 and uses q3 and 
q4 to “check” on whether its guess was 
correct. 
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