
Course: Automata Theory

Lecture 6: Deterministic and Non-
Deterministic Finite Automata

Lecturer: Martha Gichuki

Course description
• The course begins with an introduction to logic and formal

grammar where learners will do a recap on sets, logic and truth
tables, sequences, relations and functions

• A coverage of finite state machines, Push Down automata and
Turing Machines (The Church’s thesis) will culminate the study
of various models of computation.

• Formal language and grammar will then follow to enable
learners differentiate regular and context free languages.

• An evaluation of the computability and complexity of practical
computational problems which are the foundations of
automata theory will then be done and the outcome will be
problem description.

Learning outcomes:

Lecture 6: Deterministic and Non-Deterministic Finite
Automata

At the end of the lecture the learner will be able to:

• Define Finite Automata.

• Describe Finite Automata formally.

• Differentiate Deterministic and Non-Deterministic
Finite Automata

6.1 Finite Automata

Introduction:

• A finite-state machine (finite automaton) is a
simple, limited model of computation with a
number of states and transitions.

• Finite Automata are good models for computers
with an extremely limited amount of memory.

• Though the memory is limited, we interact with
such computers all the time as they lie at the
heart of various electromechanical devices.

• An automaton is a mathematical model for a Finite State
Machine (FSM).

• A finite State Machine is a machine that, given an input of
symbols, “jumps” or transitions through a series of states
according to a transition function (which can be expressed as a
table).

• This transition function tells the automaton which state to go
to next given a current state and a current symbol.

• The input is read symbol by symbol, until it is consumed
completely, after which, the automaton is said to have stopped.

• Depending on the state in which the automaton stops, it’s said
that the automaton either accepts or rejects the input.

• The set of all the words accepted by an automaton is called the
language accepted by the automaton.

Example one: Automatic Door
• States: - Door is either open or closed

• Transitions: - Changes the door from one state to another, based on certain
controls like a foot pad that once stepped on, senses that someone is
standing nearby.

Front
Pad

Rear
PadDOOR

The same machine can be illustrated using a state diagram as shown below: -

This behaviour of the door can be represented in a transition table as shown below:-

Actions
(Transitions)

Both Front Rear Neither

States

Closed Open Open Open Closed

Open Open Open Open Closed

Open

Neither

Closed

Front, Rear, Both

Neither

Front, Rear, Both

Example Two: Elevator Controller

• In an elevator controller a state may represent the
floor the elevator is on and the inputs might be the
signals received from the buttons.

• This computer might need several bits to keep
track of this information.

Other examples:

• Controllers for various household appliances such
as dish washers and electronic thermostats, as well
as parts of digital watches and calculators are
additional examples of computers with limited
memories. The design of such devices requires
keeping the methodology and terminology of finite
automata in mind.

FORMAL DEFINITION OF A FINITE AUTOMATON

•Other than using state diagrams, we now define Finite
automata formally.

•Though state diagrams are easier to grasp we need the
formal definition for two main reasons: -

i. A formal definition is precise – It resolves any
uncertainties about what is allowed in a finite
automaton.

ii. Good notation provides a clear way to think and
express thoughts

• From lecture 1 we indicated that a list of five
elements is called a 5-tuple.

• The formal definition of a finite automaton is a 5-
tuple consisting of five parts.

i. A set of states

ii. Input alphabet showing the allowed input
symbols

iii. Rules for going from one state to the other
depending on the input symbol

iv. The start state and

v. A set of accept states– sometimes called final
states .

The Transition Function

• We denote the transition function as δ (delta sign)
to define the rules for moving.

• If the finite automaton has an arrow from a state
X to a state Y labeled with the input symbol 1,
that means that, if the automaton is in state X
when it reads a 1, it then moves to state Y.

• We can indicate the same thing with the
transition function by saying that δ(X, 1) = Y.

• This notation is a kind of mathematical
shorthand.

Types of Automatons

1. Deterministic Finite Automata (DFA)

• This is an automaton in which each move (transition from
one state to another) is uniquely determined by the current
configuration.

• If the internal state, input and contents of the storage are
known, it is possible to predict the future behaviour of the
automaton.

• This is said to be Deterministic Finite Automaton (DFA),
otherwise it is Non-Deterministic Finite Automaton (NFA).

• An automaton whose output response is “Yes” or “No” is
called an acceptor.

The formal description of a DFA is a five-tuple

•M= (Q,∑ (sigma sign) , δ (delta sign) , q0, F);
where: -

Q = Finite set of Internal States,

∑= Finite Set of Symbols “Input Alphabet” ,

δ : Q X ∑→Q is the Transition Function

q0∈Q is the Initial State

F ⊆ Q is the Set of Final States

• The input mechanism can move from left to right and
reads exactly one symbol on each step.

• The transition from one internal state to another is
governed by the transition function (δ).

• Example: if δ(q0, a) = q1, this means that if the DFA is in
state “q0” and the current input symbol is “a”, then the
DFA will go into state q1.

• The start state is normally represented using an oval
shape that has an arrow pointing into it from nowhere.

• The final state is represented using a double
circle/oval.

• With a DFA, exactly one transition arrow exits every
state for each possible input symbol.

Example: Consider the following state diagram of a DFA M3, answer the
questions presented about this machine: -

M3

a)What is the start state of M3? q1

b)What are the sets are of accept /Final states of
M3? {q2}

c) What sequence of states does M3 go through
on input aabba? q1, q2, q3, q1, q1,q2

d) Does M3 accept the string aabb? Give a
reason for your answer. q1, q2, q3, q1, q1, - No
because it does not take us to the final state
q2.

e) Does M3 accept the string string { } ? Give a
reason for your answer. No it does not,
given that we don’t have empty input into
q2, which is the accept state

•So far in our discussion, every step of a
computation follows in a unique way
from the preceding step.

•When the machine is in a given state and
reads the next input symbol, we know
what the next state will be – it is
determined. We called this deterministic
computation.

2. Non-deterministic Finite Automata (NFA)

•Non-determinism is a useful concept
with a great impact on the theory of
computation.

•In a non-deterministic machine,
several choices may exist for the next
state at any point and the machine
therefore may have additional
features.

Example: - Consider the state diagram for an NFA
machine N1 above.

• We realize when the NFA, reads an input string, there
are multiple ways to proceed.

• Example: While in state q1, if the next symbol is a 1,
the machine splits into multiple copies of it and
follows all the possibilities in parallel.

0, 1

, 0 ∈

0 1,

q4
q3q1

1
q2

1

How does an NFA compute?

How does an NFA compute?

• If a state with a ∈ symbol on an exiting arrow
is encountered, something similar happens.

• Without reading any input, the machine splits
into multiple copies, one following each of the
exiting ∈-labeled arrows and one staying at the
current state.

• Then the machine splits non-deterministically
as before.

From this state diagram we can come up with a
table showing three differences between DFA
and NFA as follows: -

• Non- determinism may be viewed as a
kind of parallel computation wherein
several processes can be running
concurrently.

• When the NFA splits to follow several
choices; this corresponds to a process
known as “forking” into several
children each proceeding separately.

• If at least one of these processes leads
to an accept state then the entire
computation accepts.

• Another way to think of a
nondeterministic computation is as a tree
of possibilities.

• The root of the tree corresponds to the
start of the computation.

• Every branching point in the tree
corresponds to a point in the computation
at which the machine has multiple
choices.

• The machine accepts the computation if
at least one of the computation branches
ends in an accept state.

Importance of NFA

i. NFA may be much smaller than its
deterministic counterpart, or its functioning
may be easier to understand.

ii. Non-determinism in finite automata is also a
good introduction to non-determinism in
more powerful computational models
because finite automata are especially easy to
understand.

iii. Every NFA can be converted into an
equivalent DFA and constructing NFAs is
sometimes easier than directly constructing
DFAs.

Formal Definition of a Nondeterministic
Finite Automaton (NFA)

•The formal definition of an NFA is similar
to that of a DFA.

•Both have states, an input alphabet, a
transition function, a start state and a
collection of accept states.

•However, they differ in one essential way:
in the type of transition function.

• Recall from Lecture 1 that a set Ε with no
elements is called an empty set and it is denoted
by { } or ∅

• For the NFA, the transition function produces a
set of possible next states.

• For any set Q we write the power set of Q as
P(Q) to be the collection of all subsets of Q.

• Here P(Q) is called the power set of Q.

• For any input alphabet ∑ we write ∑∈ to be
∑∪{∈}.

• Now we can easily write the formal description
of the type of the transition function in an NFA.
It is δ: Q X ∑∈→ P(Q).

NFA Formal Definition
A Nondeterministic Finite Automaton is a 5-tuple
M= (Q,∑, δ , q0, F); where: -

1. Q is a Finite set of Internal States

2. ∑ is a Finite Set of Symbols “Input Alphabet”

3. δ: Q X ∑∈ → P (Q) is the transition symbol

4. q0∈ Q is the initial state

5. F ⊆Q is the Set of Final/accept States

• Recall that the formal definition precisely describes
what we mean by a finite automaton.

Example 1:

• Let A be the language consisting of all strings
over {0, 1} containing a 1 in the third position
from the end (e.g. 000100 is in A but 0011 is not).
The following four-state NFA N2 recognizes A.

, 1 0

0, 1

q4

q3q1

1
q 2

0, 1

One good way to view the computation
of this NFA is to say that:-

•The machine stays in the start state q1
until it “guesses” that it is three places
from the end.

•At that point, if the input symbol is a 1,
it branches to state q2 and uses q3 and
q4 to “check” on whether its guess was
correct.

References
• Rowan G. & John T., (2009), Discrete Mathematics: Proofs,

Structures and Applications, CRC Press, ISBN: 9781439812808.

• W. D. Wallis (2003), A Beginners Guide to Discrete Mathematics,
Springer Science & Business Media, ISBN: 978-0817642693.

• Introduction to the theory of computation (3rd ed.), Michael, S.
Boston, Cengage Learning. ISBN-13: 978-1133187790, (2012).

• Introduction to languages and the theory of computation (3rd
ed.), Martin, J., New York: McGraw-Hill. ISBN-13: 978-
0072322002, (2002)

Course: Automata Theory

Lecture 6: Deterministic and Non-
Deterministic Finite Automata

Lecturer: Martha Gichuki

