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Course Calendar

Week Main Content

Week 7 Extension of Simple Regression: Functional Forms I

Week 8 Extension of Simple Regression: Functional Forms II

Week 9 Extension of Simple Regression: Functional Forms III

Week 10 Multiple Regression 

Week 11 Multiple Regression: Problem of Inference

Week 12 Multiple Regression: Functional Forms

Week 13 Introduction to Dummy Variables

Week 14 Introduction to Dummy Variables and Regression Methods

Week 15 Regression with Dummy Variables: Hands-on-Exercise 

Week 16 Application of Regression 
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Recap

• Multiple Linear Regression: Testing of Hypothesis

• Steps involved

• The “Incremental” or “Marginal” contribution of an explanatory 
variable: using the example of Child Mortality as the regressand

• Testing the equality of two regression coefficients Examples of cubic 
cost function

• Restricted least square – Cobb-Douglas production function

• Comparing two regressions: 

• Testing the stability of the estimated regression model over time –
using the savings and income data of US as an example 
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Outline

• Testing of Functional Forms

• Functional Forms in Multiple Regression
• The Cobb–Douglas Production Function

• Polynomial Regression Models

• Introduction to Dummy Variables
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8.11.Testing the functional form of regression:

• Choosing between Linear and Log–linear Regression Models

• The choice between a linear regression model (the regressand is a 
linear function of the regressors) or a log–linear regression model 
(the log of the regressand is a function of the logs of the regressors) is 
a perennial question in empirical analysis. 

• Choosing between linear and log-linear regression (the log of the 
regressand is a function of the logs of the regressors) models: MWD 
Test (MacKinnon, White and Davidson)
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8.11.Testing the functional form of regression

• To illustrate this test, assume the following

• H0: Linear Model Y is a linear function of regressors, the Xs;

• H1: Log-linear Model Y is a linear function of logs of regressors, the 
lnXs;

• where, as usual, H0 and H1 denote the null and alternative 
hypotheses. 
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7

8-11. Testing the functional form of regression: 
• Step 1: Estimate the linear model and obtain the estimated Y values. Call 
them Yf (i.e.,Y^). Take lnYf.

• Step 2: Estimate the log-linear model and obtain the estimated lnY values, 
call them lnf (i.e., ln^Y )

• Step 3: Obtain Z1 = (lnYf – lnf)

• Step 4: Regress Y on Xs and  Z1. Reject H0 if the coefficient of  Z1 is 
statistically significant, by the usual t - test

• Step 5: Obtain Z2 = antilog of (lnf – Yf) 

• Step 6: Regress lnY on lnXs and Z2. Reject H1 if the coefficient of Z2 is 
statistically significant, by the usual t-test



8.11.Testing the functional form of regression

• Although the MWD test seems involved, the logic of the test is quite 
simple.

• If the linear model is in fact the correct model, the constructed 
variable Z 1 should not be statistically significant in Step IV, for in that 
case the estimated Y values from the linear model and those 
estimated from the log–linear model (after taking their antilog values 
for comparative purposes) should not be different. 

• The same comment applies to the alternative hypothesis H1.
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EX. 8.5 The Demand for Roses
Quarter Y X2 X3 X4 X5
1971–III 11,484 2.26 3.49 158.11 1
–IV 9,348 2.54 2.85 173.36 2
1972–I 8,429 3.07 4.06 165.26 3
–II 10,079 2.91 3.64 172.92 4
–III 9,240 2.73 3.21 178.46 5
–IV 8,862 2.77 3.66 198.62 6
1973–I 6,216 3.59 3.76 186.28 7
–II 8,253 3.23 3.49 188.98 8
–III 8,038 2.6 3.13 180.49 9
–IV 7,476 2.89 3.2 183.33 10
1974–I 5,911 3.77 3.65 181.87 11
–II 7,950 3.64 3.6 185 12
–III 6,134 2.82 2.94 184 13
–IV 5,868 2.96 3.12 188.2 14
1975–I 3,160 4.24 3.58 175.67 15
–II 5,872 3.69 3.53 188 16



EX. 8.5 The Demand for Roses

• Exercise 7.16 - data on the demand for roses in the Detroit 
metropolitan area for the period 1971–III to 1975–II. 

• For illustrative purposes, we will consider the demand for 
roses as a function only of the prices of roses and carnations, 
leaving out the income variable for the time being. 

• Now we consider the following models:

• Linear model: Yt = α1 + α2X2t + α3X3t + ut (8.10.1)

• Log–linear model: 

lnYt = b1 + b2 lnX2t + b3 lnX3t + ut (8.10.2)
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EX. 8.5 The Demand for Roses

• where Y is the quantity of roses in dozens, 

• X2 is the average wholesale price of roses ($/dozen), and 

• X3 is the average wholesale price of carnations ($/dozen). 

• A priori, α2 and β2 are expected to be negative (why?), and α3 and β3

are expected to be positive (why?). 

• Slope coefficients in the log–linear model are elasticity coefficients.
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EX. 8.5 The Demand for Roses

• The regression results are as follows
• Yˆt = 9734.2176 − 3782.1956X2t + 2815.2515X3t

t = (3.3705) (−6.6069) (2.9712) (8.10.3)
F = 21.84 R2 = 0.77096

• ln Yt = 9.2278 − 1.7607 lnX2t + 1.3398 lnX3t

t = (16.2349) (−5.9044) (2.5407) (8.10.4)
F = 17.50 R2= 0.7292

• As these results show, both the linear and the log–linear models seem to fit 
the data reasonably well: 

• The parameters have the expected signs and the t and R2 values are 
statistically significant.
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EX. 8.5 The Demand for Roses

• To decide between these models on the basis of the MWD test, we first 
test the hypothesis that the true model is linear. 

• Then, following Step IV of the test, we obtain the following regression:

• Since the coefficient of Z1 is not statistically significant (the p value of the 
estimated t is 0.98), we do not reject the hypothesis that the true model is 
linear. 
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EX. 8.5 The Demand for Roses

• Suppose we switch gears and assume that the true model is log–
linear. 

• Following step VI of the MWD test, we obtain the following regression 
results:

• The coefficient of Z2 is statistically significant at about the 12 percent 
level (p value is 0.1225). 
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EX. 8.5 The Demand for Roses

• Therefore, we can reject the hypothesis that the true model is log–
linear at this level of significance. 

• Of course, if one sticks to the conventional 1 or 5 percent significance 
levels, then one cannot reject the hypothesis that the true model is 
log–linear. 

• As this example shows, it is quite possible that in a given situation we 
cannot reject either of the specifications.
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EX. 8.5 The Demand for Roses

• Yˆt = 9727.5685 − 3783.0623X2t + 2817.7157X3t + 85.2319Z1t

t = (3.2178) (−6.3337) (2.8366) (0.0207) (8.10.5)
F = 13.44 R 2 = 0.7707

• Since the coefficient of Z1 is not statistically significant (the p value of the 
estimated t is 0.98), we do not reject the hypothesis that the true model is 
linear.

• Suppose we switch gears and assume that the true model is log–linear. 
Following step VI of the MWD test, we obtain the following regression 
results:

• ln Y^t = 9.1486 − 1.9699 lnXt + 1.5891 lnX2t − 0.0013Z2t

t = (17.0825) (−6.4189) (3.0728) (−1.6612) (8.10.6)
F = 14.17 R2 = 0.7798
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EX. 8.5 The Demand for Roses

• The coefficient of Z2 is statistically significant at about the 12 percent 
level (p value is 0.1225). Therefore, we can reject the hypothesis that 
the true model is log–linear at this level of significance. 

• Of course, if one sticks to the conventional 1 or 5 percent significance 
levels, then one cannot reject the hypothesis that the true model is 
log–linear. 

• As this example shows, it is quite possible that in a given situation we 
cannot reject either of the specifications.
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Functional Forms: 
The Cobb–Douglas Production Function

• Appropriate transformations can convert nonlinear relationships into 
linear ones so that we can work within the framework of the classical 
linear regression model. 

• The various transformations discussed there in the context of the 
two-variable case can be easily extended to multiple regression 
models. 

• We demonstrate transformations in this section by taking up the 
multivariable extension of the two variable log–linear model; others 
can be found in the exercises and in the illustrative examples 
discussed throughout the rest of this book. 
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The Cobb–Douglas production function:

• The specific example we discuss is the celebrated Cobb–Douglas 
production function of production theory. 

• The Cobb–Douglas prod. function, in its stochastic form, may be 
expressed as

• Yi = b1Xb2
2i Xb3

3ie
U

i         (7.9.1)

• where Y = output 

• X2 = labor input;  X3 = capital input 

• u = stochastic disturbance term; e = base of natural logarithm
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The Cobb–Douglas production function

• From Eq. (7.9.1) it is clear that the relationship between output and 
the two inputs is nonlinear. 

• However, if we log-transform this model, we obtain:
By log-transform of this model:

lnYi = lnb1 + b2ln X2i + b3ln X3i + Ui         

= b0 + b2ln X2i + b3ln X3i + Ui (7.9.2)
• where β0 = ln β1. 

• Thus written, the model is linear in the parameters β0, β2, and β3 and 
is therefore a linear regression model.



The Cobb–Douglas production function:

• Notice, though, it is nonlinear in the variables Y and X but linear in the logs 
of these variables. 

• In short, (7.9.2) is a log-log, double-log, or log-linear model, the multiple 
regression counterpart of the two-variable log-linear model (6.5.3). 

• The properties of the Cobb–Douglas production function are quite well 
known:

• 1. β2 is the (partial) elasticity of output with respect to the labor input, that 
is, it measures the percentage change in output for, say, a 1 percent change 
in the labor input, holding the capital input constant (see exercise 7.9). 
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Properties of the Cobb–Douglas production function

• 2. Likewise, β3 is the (partial) elasticity of output with respect to the capital 
input, holding the labor input constant. 

• 3. The sum (β2 + β3) gives information about the returns to scale, that is, 
the response of output to a proportionate change in the inputs. 

• If this sum is 1, then there are constant returns to scale, that is, doubling 
the inputs will double the output, tripling the inputs will triple the output, 
and so on. 

• If the sum is less than 1, there are decreasing returns to scale—doubling 
the inputs will less than double the output. Finally, if the sum is greater 
than 1, there are increasing returns to scale—doubling the inputs will more 
than double the output.
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Properties of the Cobb–Douglas production function

• Before proceeding further, note that whenever we have a log–linear 
regression model involving any number of variables the coefficient of 
each of the X variables measures the (partial) elasticity of the 
dependent variable Y with respect to that variable. Thus, if we have a 
k-variable log-linear model:

• ln Yi = b0 + β2lnX2i + β3lnX3i +···+ βklnXki + ui (7.9.3) 

• each of the (partial) regression coefficients, β2 through βk , is the 
(partial) elasticity of Y with respect to variables X2 through Xk. 
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Properties of the Cobb–Douglas production function

• To see this, differentiate (7.9.3) partially with respect to the log of 
each X variable. 

• Therefore, ∂lnY/∂lnX2 = (∂Y/∂X2 )(X2 /Y) = β2 , 

• which, by definition, is the elasticity of Y with respect to X2 and 

• ∂lnY/∂lnX3 = (∂Y/∂X3)(X3/Y) = β3, 

• which is the elasticity of Y with respect to X3, and so on.

• To illustrate the Cobb–Douglas production function, we obtained the 
data shown in Table 7.3; these data are for the agricultural sector of 
Taiwan for 1958–1972. 



TABLE 7.3 REAL GROSS PRODUCT, LABOR DAYS, AND REAL CAPITAL INPUT IN THE 

AGRICULTURAL SECTOR OF TAIWAN, 1958–1972
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Real gross 
product Labor days Real capital input

Year
(millions of NT 
$)*, Y

(millions of 
days), X2

(millions of NT $), 
X3

1958 16,607.70 275.5 17,803.70
1959 17,511.30 274.4 18,096.80
1960 20,171.20 269.7 18,271.80
1961 20,932.90 267.0 19,167.30
1962 20,406.00 267.8 19,647.60
1963 20,831.60 275.0 20,803.50
1964 24,806.30 283.0 22,076.60
1965 26,465.80 300.7 23,445.20
1966 27,403.00 307.5 24,939.00
1967 28,628.70 303.7 26,713.70
1968 29,904.50 304.7 29,957.80
1969 27,508.20 298.6 31,585.90
1970 29,035.50 295.5 33,474.50
1971 29,281.50 299.0 34,821.80
1972 31,535.80 288.1 41,794.30

Source: Thomas Pei-Fan Chen, 
“Economic Growth and Structural 
Change in Taiwan—1952–1972, A 
Production Function Approach,” 
unpublished Ph.D. thesis, Dept. of 
Economics, Graduate Center, City 
University of New York, June 1976, 
Table II. *New Taiwan dollars.

Basic Econometrics, Damodar Gujarati, 
Page, 225



Example 7.3: The Cobb-Douglas Production function

• Assuming that the model (7.9.2) satisfies the assumptions of the classical 
linear regression model, we obtain the following regression by the OLS 
method.

• From Eq. (7.9.4) we see that in the Taiwanese agricultural sector for the 
period 1958–1972 the output elasticities of labor and capital were 1.4988 
and 0.4899, respectively. 
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Example 7.3: The Cobb-Douglas Production function

• In other words, over the period of study, holding the capital input 
constant, a 1 percent increase in the labor input led on the average to 
about a 1.5 percent increase in the output. 

• Similarly, holding the labor input constant, a 1 percent increase in the 
capital input led on the average to about a 0.5 percent increase in the 
output. 

• Adding the two output elasticities, we obtain 1.9887, which gives the 
value of the returns to scale parameter. 

• As is evident, over the period of the study, the Taiwanese agricultural 
sector was characterized by increasing returns to scale.
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Example 7.3: The Cobb-Douglas Production function

• From a purely statistical viewpoint, the estimated regression line fits 
the data quite well. 

• The R2 value of 0.8890 means that about 89 percent of the variation 
in the (log of) output is explained by the (logs of) labor and capital. 

• Note: the estimated standard errors can be used to test hypotheses 
about the “true” values of the parameters of the Cobb– Douglas 
production function for the Taiwanese economy.
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7.10 Polynomial Regression Models

• We now consider a class of multiple regression models, the 
polynomial regression models, that have found extensive use in 
econometric research relating to cost and production functions. 

• In introducing these models, we further extend the range of models 
to which the classical linear regression model can easily be applied. 

• To fix the ideas, consider Figure 7.1, which relates the short-run 
marginal cost (MC) of production (Y) of a commodity to the level of its 
output (X). 

• The visually-drawn MC curve in the figure, the textbook U-shaped 
curve, shows that the relationship between MC and output is 
nonlinear.
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7.10 Polynomial Regression Models

• If we were to quantify this relationship from the given scatter points, 
how would we go about it? 

• In other words, what type of econometric model would capture first 
the declining and then the increasing nature of marginal cost? 

• Geometrically, the MC curve depicted in Figure 7.1 represents a 
parabola. Mathematically, the parabola is represented by the 
following equation:

• Yi = b0 + b1 Xi + b2 X2
i +…+ bk Xk

i + Ui (7.10.1)
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7.10 Polynomial Regression Models

• Yi = b0 + b1 Xi + b2 X2
i + Ui

• is called a quadratic function, or more generally, a second-degree 
polynomial in the variable X—the highest power of X represents the 
degree of the polynomial (if X3 were added to the preceding function, 
it would be a third-degree polynomial, and so on).

31



FIG 7.1 The U-shaped marginal cost curve
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Source: Basic Econometrics, Damodar Gujarati, Page, 226



7.10. Polynomial Regression Models

• The stochastic version of (7.10.1) may be written as

• Yi = b0 + b1 Xi + b2 X2
i + Ui (7.10.2)

• which is called a second-degree polynomial regression. The general 
kth degree polynomial regression may be written as

• Yi = b0 + b1 Xi + b2 X2
i +…+ bk Xk

i + Ui (7.10.3)

• Notice that in these types of polynomial regressions there is only one 
explanatory variable on the right-hand side but it appears with 
various powers, thus making them multiple regression models.

• Incidentally, note that if Xi is assumed to be fixed or nonstochastic, 
the powered terms of Xi also become fixed or nonstochastic.
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7.10. Polynomial Regression Models

• Do these models present any special estimation problems? 

• Since the second-degree polynomial (7.10.2) or the kth degree polynomial 
(7.10.13) is linear in the parameters, the β’s, they can be estimated by the 
usual OLS or ML methodology. 

• But what about the collinearity problem? 

• Aren’t the various X’s highly correlated since they are all powers of X?

• Yes, but remember that terms like X2, X3, X4, etc., are all nonlinear functions 
of X and hence, strictly speaking, do not violate the no multicollinearity 
assumption.

• In short, polynomial regression models can be estimated by the techniques 
presented in this lecture and present no new estimation problems.
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Ex. 7.4 Estimating the Total Cost Function

• As an example of the polynomial regression, consider the data on 
output and total cost of production of a commodity in the short run 
given in Table 7.4. 

• What type of regression model will fit these data? 

• For this purpose, let us first draw the scattergram, which is shown in 
Figure 7.2.
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FIG 7.2: The total cost curve
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Source: Basic Econometrics,
Damodar Gujarati, Page. 228



Ex. 7.4 Estimating the Total Cost Function

• From this figure it is clear that the relationship between total cost and 
output resembles the elongated S curve; notice how the total cost 
curve first increases gradually and then rapidly, as predicted by the 
celebrated law of diminishing returns.

• This S shape of the total cost curve can be captured by the following 
cubic or third-degree polynomial:

• Yi = b0 + b1 Xi + b2 X2
i +b3 X3

i + Ui (7.10.4)

• where Y = total cost and X = output

37



38

Source: Basic Econometrics,
Damodar Gujarati, Page. 227



Ex. 7.4 Estimating the Total Cost Function

• Given the data of Table 7.4, we can apply the OLS method to estimate 
the parameters of (7.10.4). 

• But before we do that, let us find out what economic theory has to 
say about the short-run cubic cost function (7.10.4). 

• Elementary price theory shows that in the short run the marginal cost 
(MC) and average cost (AC) curves of production are typically U-
shaped—initially, as output increases both MC and AC decline, but 
after a certain level of output they both turn upward, again the 
consequence of the law of diminishing return. This can be seen in 
Figure 7.3 (see also Figure 7.1). 
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Ex. 7.4 Estimating the Total Cost Function

• And since the MC and AC curves are derived from the total cost curve, 
the U-shaped nature of these curves puts some restrictions on the 
parameters of the total cost curve (7.10.4). 

• As a matter of fact, it can be shown that the parameters of (7.10.4) 
must satisfy the following restrictions if one is to observe the typical 
U-shaped short-run marginal and average cost curves:
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Ex. 7.4 Estimating the Total Cost Function

• All this theoretical discussion might seem a bit tedious. 

• But this knowledge is extremely useful when we examine the 
empirical results, for if the empirical results do not agree with prior 
expectations, then, assuming we have not committed a specification 
error (i.e., chosen the wrong model), we will have to modify our 
theory or look for a new theory and start the empirical enquiry all 
over again. 

• But as noted in the Introduction, this is the nature of any empirical 
investigation.
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Empirical Results

• When the third-degree polynomial regression was fitted to the data 
of Table 7.4, we obtained the following results:

• (Note: The figures in parentheses are the estimated standard errors.)
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Example 7.5 GDP Growth Rate, 1960–1985 & Relative Per 
Capita GDP, In 119 Developing Countries

• As an additional economic example of the polynomial regression 
model, consider the following regression results:

• per capita GDP, 1960 (percentage of U.S. GDP per capita, 1960). 
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Ex. 7.5 GDP Growth Rate, 1960–1985 & Relative Per Capita 
GDP, In 119 Developing Countries

• The R2 (adj R2) tells us that, after taking into account the number of 
regressors, the model explains only about 3.6 percent of the variation in 
GDPG. 

• Even the unadjusted R2 of 0.053 seems low. 
• This might sound a disappointing value but, as we shall show in the next 

lecture, such low R2’s are frequently encountered in cross-sectional data 
with a large number of observations. 

• Besides, even an apparently low R2 value can be statistically significant (i.e., 
different from zero).

• As this regression shows, GDPG in developing countries increased as RGDP 
increased, but at a decreasing rate; that is, developing economies were not 
catching up with advanced economies.
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Ex. 7.5 GDP Growth Rate, 1960–1985 & Relative Per 
Capita GDP, In 119 Developing Countries

• If we take the derivative of (7.10.7), we will obtain 

• dGDPG / dRGDP = 0.062 − 0.122 RGDP 

• showing that the rate of change of GDPG with respect to RGDP is 
declining. If we set this derivative to zero, we will get RGDP ≈ 0.5082.

• Thus, if a country’s GDP reaches about 51 percent of the U.S. GDP, the 
rate of growth of GDPG will crawl to zero. 

• This example shows how relatively simple econometric models can be 
used to shed light on important economic phenomena.



Summary and Conclusion

• Testing of Hypothesis: Choosing between Linear and Log–linear 
Regression Models

• Different functional forms

• Total cost cubic function

• Cobb-Douglas Production Function



Introduction to Dummy Variables 

• Dummy variables are qualitative variables

• Whether the student will get admission into an university or not ?

• Whether it is going to rain today or not ?

• Whether it is going to be sunny day or not ?

• Before that a short introduction to what is data and data analysis 
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Basics of Production Function and 
Cobb_Douglas Production Function

• A short video from the following sources are taken on the 

• Basics of Production Function and 

• https://www.youtube.com/watch?v=_fM2TjqArc4

• Cobb_Douglas Production Function
• https://www.youtube.com/watch?v=cBCFKiaMKkw



What Next?

• Dummy Variables before that 

• What is data and data analysis?


