
Course: Automata Theory

Lecture 11: Regular Languages
and Context Free Languages

Lecturer: Martha Gichuki

Course description
• The course begins with an introduction to logic and formal

grammar where learners will do a recap on sets, logic and truth
tables, sequences, relations and functions

• A coverage of finite state machines, Push Down automata and
Turing Machines (The Church’s thesis) will culminate the study of
various models of computation.

• Formal language and grammar will then follow to enable learners
differentiate regular and context free languages.

• An evaluation of the computability and complexity of practical
computational problems which are the foundations of automata
theory will then be done and the outcome will be problem
description.

Learning outcomes:

Lecture 11: Regular Languages and Context
Free Languages

At the end of the lecture the learner will be able to:

• Describe Regular and Context Free Languages

• Derive languages using Parse Trees

• Formally describe Context Free Languages

Context Free Grammar (CFG)

• Recall that Push down Stack Machines
(PDA) recognize Context Free Languages
and these are built upon Context Free
Grammar.

• In a natural language like English,
understanding a sentence begins with
understanding the grammatical structure,
meaning that one has to know how it is
derived from the grammar rules of the
language.

Formal Definition of a Context Free Grammar
(CFG)

A Context Free Grammar is a 4 – Tuple
{V, T, S, P}, where: -

1) V – is a finite set of Variables

2) T – is a finite set of Terminals

3) S – is the Start Variable

4) P – is a finite set of production rules

Context Free Grammar (CFG)

• Suppose we have a Context Free
Grammar e.g. the one specifying the
syntax of a programming language.

• If a string is derivable from this grammar
it is often useful to know a derivation
because that is what allows us to
interpret the strings correctly.

• A natural way to represent these
derivations is by use of derivation trees.

• A natural way of exhibiting any
structure is by deriving it using a
derivation tree.

• The root of the tree represents the
variable with which we begin the
derivation (Start Variable).

• Another name for a derivation tree is a
parse tree.

Derivation Trees:

Derivation Trees:

•Each interior node of the tree corresponds to
the variables of the grammar

•The children of the tree correspond to the
symbols in the entire string appearing on
the right side of the production rules.

Derivation of Languages:
• This refers to the sequence of rules that

produce the finished string of terminals
from the start symbol. This is called
derivation or production.

• The language of CFG is the set of terminal
symbols which we can derive using
specified production rules.

• The symbol → is used within the
production rules to mean “Could take the
value”.

Example 1:

•Given the terminal – a

•Non-terminal – S

•Production rules S→aS, S→∧ where
∧ (empty string), the derivation for
aaaa could be given as

S→aS
S →aaS
S →aaaS
S →aaaaS
S →aaaa∧→aaaa

Parse Tree

•The process of deriving a string is
called as derivation and the
geometrical representation of a
derivation is called as a parse
tree or derivation tree.

Leftmost Derivation-

•This the process of deriving a string
by expanding the leftmost non-
terminal at each step.

•The geometrical representation of
leftmost derivation is called as
a leftmost derivation tree.

Rightmost Derivation-

•This is the process of deriving a string
by expanding the rightmost non-
terminal at each step.

•The geometrical representation of
rightmost derivation is called as
a rightmost derivation tree.

Yield of a Parse Tree-

•Concatenating the leaves of a parse tree
from the left produces a string of terminals.

•This string of terminals is called as yield of
a parse tree.

Properties of a Parse Tree-

• The root node of a parse tree is the start
symbol of the grammar.

• Each leaf node of a parse tree represents a
terminal symbol.

• Each interior node of a parse tree represents
a non-terminal symbol.

• Parse tree is independent of the order in
which the productions are used during
derivations.

Example 2:

• Given the terminal a;

• Non – terminal S

• Productions: S→aS/Sa/a

• Derive the Tree for the string “aa”

Solution

• The word “aa” can be generated using two parse trees: -

Example 3:
• Consider a context free grammar that defines the

language pal of all palindromes over the alphabet ∑
{a, b} using the following production rules:-

(i.) (S→∧) - S could take the null value

(ii.) (S→a/b) - S could take the value a or b
(iii.) (S→aSa/bSb) - S could take the form aSa or bSb

• From these rules we can write
S→aSa→abSba→ab∧ba →abba (which are all
palindromes!)

• In an expression such as aSa or bSb, the two
alternatives are aSa & bSb and not a & b directly.

S

a
Sa

b
Sb

∧

Three steps are used to derive string abba.
• Rule three is used twice; and rule one; once,

using the → notation.
• The rules can be written as: -
S→a/b/∧
S→aSa/bSb
S→aSa→bSb→ab∧ba=abba
• When we concatenate the leaves of any

derivation tree, we get a string which is known
as the yield of the tree. This tree has 4 yields.

Question:
Using the above production rules, derive the following
strings: -

i. baab

• (S→∧)

• (S→a/b)

• (S→aSa/bSb)

S

b
Sb

a
Sa

∧

• (S→∧)

• (S→a/b)

• (S→aSa/bSb)

ii. aaaa
S

a
Sa

a
Sa

∧

iii. bbbb
• (S→∧)

• (S→a/b)

• (S→aSa/bSb)

S

b
Sb

b
Sb

∧

iv. abaaba

• (S→∧)

• (S→a/b)

• (S→aSa/bSb) S

bSb

aSa

∧

S

aa

Example 4:

Given a CFG with the following
definitions

• Terminals a,b

• Non-terminals: S, A

• Production Rules
• S→AAA/AA
• A→AA/aA/Ab/a/b

• The string “abaaba” has the
derivation tree:

b

A

A

A

a

A

a

A
A

A

a

a A

b

Grammar Ambiguity

•For ambiguous grammars, Leftmost derivation
and Rightmost derivation represents different
parse trees.

•For unambiguous grammars, Leftmost derivation
and Rightmost derivation represents the same
parse tree.

•To check whether the given grammar
is ambiguous or not we check
whether we have two different parse
trees for the same string derivation-

•Consider the string w generated by
the given grammar-

w = abba
i. S → SS
ii. S → a
iii.S → b

• We realize that two different parse trees exist for string w,
therefore the given grammar is ambiguous.

Example 5:
Given the string “a+a+a” with the following production rules: -

(i.) S→S+S

(ii.) S→a

1. Left-most derivation tree for some string

This is the process that looks at the string from Left to Right following the production
rules provided.

The left most derivation for string “a+a+a” takes the format: -

• S→S+S→a+S→a+S+S→a+a+S→a+a+a= a+(a+a)

2. Right-most derivation for some string

This process looks at the string from Right to left. The right
most derivation for string “a+a+a” takes the format: -

i. S→S+S

ii. S→a

• S→S+S→S+S+S→a+S+S→a+a+S→a+a+a = (a+a)+a)

We can exhibit this structure by using left - a+(a+a) and
right - (a+a) + a derivation trees as follows: -

References

• Rowan G. & John T., (2009), Discrete Mathematics:
Proofs, Structures and Applications, CRC Press, ISBN:
9781439812808.

• W. D. Wallis (2003), A Beginners Guide to Discrete
Mathematics, Springer Science & Business Media,
ISBN: 978-0817642693.

• Introduction to the theory of computation (3rd ed.),
Michael, S. Boston, Cengage Learning. ISBN-13: 978-
1133187790, (2012).

• Introduction to languages and the theory of
computation (3rd ed.), Martin, J., New York: McGraw-
Hill. ISBN-13: 978-0072322002, (2002)

