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Course description
• The course begins with an introduction to logic and formal 

grammar where learners will do a recap on sets, logic and truth 
tables, sequences, relations and functions

• A coverage of finite state machines, Push Down automata and 
Turing Machines (The Church’s thesis) will culminate the study of 
various models of computation.

• Formal language and grammar will then follow to enable learners 
differentiate regular and context free languages. 

• An evaluation of the computability and complexity of practical 
computational problems which are the foundations of automata 
theory will then be done and the outcome will be problem 
description. 



Learning outcomes: 

Lecture 11: Regular Languages and Context 
Free Languages

At the end of the lecture the learner will be able to:

• Describe Regular and Context Free Languages 

• Derive languages using Parse Trees

• Formally describe Context Free Languages



Context Free Grammar (CFG) 

• Recall that Push down Stack Machines 
(PDA) recognize Context Free Languages 
and these are built upon Context Free 
Grammar. 

• In a natural language like English, 
understanding a sentence begins with 
understanding the grammatical structure, 
meaning that one has to know how it is 
derived from the grammar rules of the 
language.  



Formal Definition of a Context Free Grammar 
(CFG)

A Context Free Grammar is a 4 – Tuple  
{V, T, S, P}, where: -

1) V – is a finite set of Variables

2) T – is a finite set of Terminals

3) S – is the Start Variable 

4) P – is a finite set of production rules 



Context Free Grammar (CFG)

• Suppose we have a Context Free 
Grammar e.g. the one specifying the 
syntax of a programming language.

• If a string is derivable from this grammar 
it is often useful to know a derivation
because that is what allows us to 
interpret the strings correctly. 

• A natural way to represent these 
derivations is by use of derivation trees. 



• A natural way of exhibiting any 
structure is by deriving it using a 
derivation tree. 

• The root of the tree represents the 
variable with which we begin the 
derivation (Start Variable). 

• Another name for a derivation tree is a 
parse tree. 

Derivation Trees: 



Derivation Trees:

•Each interior node of the tree corresponds to 
the variables of the grammar 

•The children of the tree correspond to the 
symbols in the entire string appearing on 
the right side of the production rules. 



Derivation of Languages: 
• This refers to the sequence of rules that 

produce the finished string of terminals 
from the start symbol. This is called 
derivation or production. 

• The language of CFG is the set of terminal 
symbols which we can derive using 
specified production rules. 

• The symbol → is used within the 
production rules to mean “Could take the 
value”.  



Example 1:

•Given the terminal – a 

•Non-terminal – S 

•Production rules S→aS, S→∧ where 
∧ (empty string), the derivation for 
aaaa could be given as  

S→aS
S →aaS
S →aaaS
S →aaaaS
S →aaaa∧→aaaa



Parse Tree

•The process of deriving a string is 
called as derivation and the 
geometrical representation of a 
derivation is called as a parse 
tree or derivation tree.



Leftmost Derivation-

•This the process of deriving a string 
by expanding the leftmost non-
terminal at each step.

•The geometrical representation of 
leftmost derivation is called as 
a leftmost derivation tree.



Rightmost Derivation-

•This is the process of deriving a string 
by expanding the rightmost non-
terminal at each step.

•The geometrical representation of 
rightmost derivation is called as 
a rightmost derivation tree.



Yield of  a Parse Tree-

•Concatenating the leaves of a parse tree 
from the left produces a string of terminals.

•This string of terminals is called as yield of 
a parse tree.



Properties of a Parse Tree-

• The root node of a parse tree is the start 
symbol of the grammar.

• Each leaf node of a parse tree represents a 
terminal symbol.

• Each interior node of a parse tree represents 
a non-terminal symbol.

• Parse tree is independent of the order in 
which the productions are used during 
derivations.



Example 2:

• Given the terminal a; 

• Non – terminal S 

• Productions: S→aS/Sa/a  

• Derive the Tree for the string “aa” 

Solution

• The word “aa” can be generated using two parse trees: -



Example 3:
• Consider a context free grammar that defines the 

language pal of all palindromes over the alphabet ∑ 
{a, b} using the following production rules:-

(i.) (S→∧) - S could take the null value  

(ii.) (S→a/b) - S could take the value a or b 
(iii.) (S→aSa/bSb) - S could take the form aSa or bSb

• From these rules we can write 
S→aSa→abSba→ab∧ba →abba (which are all 
palindromes!) 

• In an expression such as aSa or bSb, the two 
alternatives are aSa & bSb and not a & b directly. 



S

a
Sa

b
Sb

∧

Three steps are used to derive string abba.
• Rule three is used twice; and rule one; once, 

using the → notation. 
• The rules can be written as: -
S→a/b/∧ 
S→aSa/bSb
S→aSa→bSb→ab∧ba=abba
• When we concatenate the leaves of any 

derivation tree, we get a string which is known 
as the yield of the tree. This tree has 4 yields. 



Question: 
Using the above production rules, derive the following 
strings: -

i. baab

• (S→∧)

• (S→a/b)

• (S→aSa/bSb)

S

b
Sb

a
Sa

∧



• (S→∧)

• (S→a/b)

• (S→aSa/bSb)

ii. aaaa
S

a
Sa

a
Sa

∧



iii. bbbb
• (S→∧)

• (S→a/b)

• (S→aSa/bSb)

S

b
Sb

b
Sb

∧



iv. abaaba

• (S→∧)

• (S→a/b)

• (S→aSa/bSb) S

bSb

aSa

∧

S

aa



Example 4:

Given a CFG with the following 
definitions 

• Terminals a,b

• Non-terminals: S, A 

• Production Rules 
• S→AAA/AA 
• A→AA/aA/Ab/a/b 

• The string “abaaba” has the 
derivation tree: 

b
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Grammar Ambiguity

•For ambiguous grammars, Leftmost derivation 
and Rightmost derivation represents different 
parse trees.

•For unambiguous grammars, Leftmost derivation 
and Rightmost derivation represents the same 
parse tree.



•To check whether the given grammar 
is ambiguous or not we check 
whether we have two different parse 
trees for the same string derivation-

•Consider the string w generated by 
the given grammar-

w = abba
i. S → SS
ii. S → a
iii.S → b



• We realize that two different parse trees exist for string w, 
therefore the given grammar is ambiguous.



Example 5:
Given the string “a+a+a” with the following production rules: -

(i.) S→S+S 

(ii.) S→a

1. Left-most derivation tree for some string 

This is the process that looks at the string from Left to Right following the production 
rules provided. 

The left most derivation for string “a+a+a” takes the format: -

• S→S+S→a+S→a+S+S→a+a+S→a+a+a= a+(a+a) 



2. Right-most derivation for some string 

This process looks at the string from Right to left. The right 
most derivation for string “a+a+a” takes the format: -

i. S→S+S 

ii. S→a

• S→S+S→S+S+S→a+S+S→a+a+S→a+a+a = (a+a)+a) 



We can exhibit this structure by using left - a+(a+a) and 
right - (a+a) + a derivation trees as follows: -
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