Course: Automata Theory

Lecture 11: Regular Languages
and Context Free Languages

Lecturer: Martha Gichuki

Course description

* The course begins with an introduction to logic and formal
grammar where learners will do a recap on sets, logic and truth
tables, sequences, relations and functions

* A coverage of finite state machines, Push Down automata and
Turing Machines (The Church’s thesis) will culminate the study of
various models of computation.

* Formal language and grammar will then follow to enable learners
differentiate regular and context free languages.

* An evaluation of the computability and complexity of practical
computational problems which are the foundations of automata
theory will then be done and the outcome will be problem
description.

Learning outcomes:

Lecture 11: Regular Languages and Context
Free Languages

At the end of the lecture the learner will be able to:
* Describe Regular and Context Free Languages

* Derive languages using Parse Trees

* Formally describe Context Free Languages

Context Free Grammar (CFQG)

* Recall that Push down Stack Machines
(PDA) recognize Context Free Languages
and these are built upon Context Free
Grammar.

* In a natural language like English,
understanding a sentence begins with
understanding the grammatical structure,
meaning that one has to know how it is
derived from the grammar rules of the
language.

Formal Definition of a Context Free Grammar
(CFG)

A Context Free Grammar is a 4 — Tuple
{V,T, S, P}, where: -

1) V —is a finite set of Variables

2) T —is a finite set of Terminals

3) S —is the Start Variable

4) P -is a finite set of production rules

Context Free Grammar (CFQG)

* Suppose we have a Context Free
Grammar e.g. the one specifying the
syntax of a programming language.

* If a string is derivable from this grammar
it is often useful to know a derivation
because that is what allows us to
interpret the strings correctly.

* A natural way to represent these
derivations is by use of derivation trees.

Derivation Trees:

* A natural way of exhibiting any
structure is by deriving it using a
derivation tree.

* The root of the tree represents the
variable with which we begin the
derivation (Start Variable).

e Another name for a derivation tree is a
parse tree.

Derivation Trees:

* Each interior node of the tree corresponds to
the variables of the grammar

* The children of the tree correspond to the
symbols in the entire string appearing on
the right side of the production rules.

Derivation of Languages:

* This refers to the sequence of rules that
produce the finished string ot terminals
from the start symbol. This is called
derivation or production.

* The language of CFG is the set of terminal
symbols which we can derive using
specified production rules.

* The symbol — is used within the
production rules to mean “Could take the
value”.

Example 1:

* Given the terminal — a
* Non-terminal — S

* Production rules S—aS, S—A where
A (empty string), the derivation for
aaaa could be given as

S—aS

S —aaS

S —aaaS

S —aaaaS

S —aaaan—aaaa

Parse Tree

* The process of deriving a string is
called as derivation and the
geometrical representation of a
derivation is called as a parse
tree or derivation tree.

Types of derivation

Leftmost Derivation-

* This the process of deriving a string
by expanding the leftmost non-
terminal at each step.

* The geometrical representation of
leftmost derivation is called as
a leftmost derivation tree.

Rightmost Derivation-

* This is the process of deriving a string
by expanding the rightmost non-
terminal at each step.

* The geometrical representation of
rightmost derivation is called as
a rightmost derivation tree.

Yield of a Parse Tree-

* Concatenating the leaves of a parse tree
from the left produces a string of terminals.

* This string of terminals is called as yield of
a parse tree.

Properties of a Parse Tree-

* The root node of a parse tree is the start
symbol of the grammar.

* Each leaf node of a parse tree represents a
terminal symbol.

* Each interior node ot a parse tree represents
a non-terminal symbol.

* Parse tree is independent of the order in
which the productions are used during
derivations.

Example 2:

* Given the terminal a;

 Non — terminal S

* Productions: S—aS/Sa/a

* Derive the Tree for the string “aa”
Solution

* The word “aa” can be generated using two parse trees: -
5

Example 3:

* Consider a context free grammar that defines the
language pal of all palindromes over the alphabet)’
{a, b} using the following production rules:-

(i.) (5—A) - S could take the null value

(ii.) (S—a/b) - S could take the value a or b
(iii.) (5—aSa/bSb) - S could take the form aSa or bSb

 From these rules we can write
S—aSa—abSba—abAba —abba (which are all
palindromes!)

* In an expression such as aSa or bSb, the two
alternatives are aSa & bSb and not a & b directly.

Three steps are used to derive string abba.

 Rule three is used twice; and rule one; once,
using the — notation.

* The rules can be written as: -

S—a/b/A

S—aSa/bSb

S—aSa—bSb—abAba=abba

* When we concatenate the leaves of any
derivation tree, we get a string which is known
as the yield of the tree. This tree has 4 yields.

Question:

Using the above production rules, derive the following
strings: - s

i. baab

* (5—N) b
* (5—a/b)

* (5—aSa/bSb)

11. aaaaq

* (5—N)
* (5—a/b)
* (5—aSa/bSb)

iii. bbbb
* (S—N)

* (5—a/b)
* (5—aSa/bSb)

10. abaaba

* (5—N)
* (S—a/b)
* (5—aSa/bSb)

Example 4:

Given a CFG with the following
definitions

 Terminals a,b
 Non-terminals: S, A

* Production Rules
* S—)AAA/ AA
s A—>AA/aA/Ab/a/b

* The string “abaaba” has the
derivation tree:

Grammar Ambiguity

* For ambiguous grammars, Leftmost derivation
and Rightmost derivation represents different
parse trees.

* For unambiguous grammars, Leftmost derivation
and Rightmost derivation represents the same
parse tree.

* To check whether the given grammar
is ambiguous or not we check
whether we have two different parse
trees for the same string derivation-

* Consider the string w generated by
the given grammar-

w = abba
i. S—SS
1. S—a

i1i.5 —» b

We realize that two different parse trees exist for string w,
therefore the given grammar is ambiguous.

N PN

S

PN N
NN

b b

Example 5:
Given the string “a+a+a” with the following production rules: -
(1.) S—S+S
(ii.) S—a
1. Left-most derivation tree for some string

This is the process that looks at the string from Lett to Right followmg the production

rules provided. s
The left most derivation for string “a+a+a” takes the format: _/_
¢ 5S—»5+5—a+5—a+5+5—at+a+S—a+at+a= a+(a+a) 1 ./“\

2. Right-most derivation for some string

This process looks at the string from Right to left. The right
most derivation for string “a+a+a” takes the format: -

i. S—S5+5
1. S—a

. S—>S+S—>S+S+S—>a+S+S—>a_+a+S—>a+a+a = (a+a)+a)

5

N
A

.

We can exhibit this structure by using left - a+(a+a) and
right - (a+a) + a derivation trees as follows: -

S S

AN AN

S + S S + S
l S + S S + S l
a a

SR

) P A 4

References

* Rowan G. & John T., (2009), Discrete Mathematics:
Proofs, Structures and Applications, CRC Press, ISBN:
9781439812808.

* W. D. Wallis (2003), A Beginners Guide to Discrete
Mathematics, Springer Science & Business Media,
ISBN: 978-0817642693.

* Introduction to the theory of computation (3rd ed.),
Michael, S. Boston, Cengage Learning. ISBN-13: 978-
1133187790, (2012).

* Introduction to languages and the theory of

computation (3rd ed.), Martin, J., New York: McGraw-
Hill. ISBN-13: 978-0072322002, (2002)

