
1

Automata Theory - Lecture 11

Regular Languages and Context Free Languages

Lecturer: Martha Gichuki

Lecture learning outcomes

At the end of the lecture you will be able to:

(i) Describe Regular and Context Free Languages

(ii) Derive languages using Parse Trees

(iii) Formally describe Context Free Languages

Automata theory is closely related to formal language theory because

automatons are often classified by the class of formal languages, they are

able to recognize.

An automaton is always anchored on the basic concepts of symbols,

words alphabets and strings. These are defined briefly as follows: -

Symbol – A character or letter (An arbitrary datum) that has some

meaning to or effect on the machine. Symbols are sometimes called letters.

Word – A finite string formed by the concatenation of a number of

symbols.

Alphabet – A finite set of symbols. It is frequently denoted by Σ, which is

the set of letters in an alphabet.

 Language - refers to a set of words formed by symbols in a given alphabet.

Kleene Closure – A language may be thought of as a sub-set of possible

words. The set of all possible words may in turn be thought of as the set

of all possible concatenations of strings. Formally, this set of all possible

2

strings is called a free monoid. It is denoted as * and the super script (*) is

called the Kleene Star.

Forma Definition of Context Free Grammar (CFG)

A Context Free Grammar is a 4-tuple (V, T, S, P} where: -

(i) V – is a finite set of Variables

(ii) T – is a finite set of Terminals

(iii) S – is the Start Variable

(iv) P – is a finite set of production rules

Recall from Lecture Eight that a PDA recognizes Context Free Languages

and these ae built upon Context Free Grammar. In a natural language like

English, understanding a sentence begins with understanding the

grammatical structure meaning knowing how it is derived from the

grammar rules of the language.

Given a context free grammar e.g. one specifying the syntax of a

programming language and a string that is derivable from the grammar it

is often useful to know a derivation because that is what allows us to

interpret the strings correctly. A natural way to represent these

derivations is by use of derivation trees.

A natural way of exhibiting any structure is by deriving it using a

derivation tree. The root of the tree represents the variable with which we

begin the derivation (Start Variable). Another name for a derivation tree

is a parse tree.

3

Each interior node of the tree corresponds to the variables of the grammar

and its children correspond to the symbols in the entire string appearing

on the right-hand side of the production rules.

The symbol → is used to mean “Could take the value”.

Derivation of Languages:

This refers to the sequence of rules that produce the finished string of

terminals from the start symbol. This is called derivation or production.

The language f a CFG is the set of terminal symbols which we can derive

using specified production rules.

Example 1:

Given the terminal – a

Non-terminal – S

Production rules S → aS, S→∧ where ∧ (empty string), the derivation for

aaaa could be given as

S→ aS

→aaS

→aaaS

→aaaaS

→aaaa∧→ aaaa

4

Example 2:

Given the terminal a;

Non – terminal S

Productions: S→ aS / Sa / a

Derive the Tree for the string aa

Solution

The word “aa” can be generated using two trees: -

 Example 3:

Consider a context free grammar that defines the language pal of all

palindromes over the alphabet ∑ {a, b} using the following production

rules: -

 (i.) (S→∧) - S could take the null value

 (ii.) (S→a/b) - S could take the value a or b

 (iii.) (S→aSa/bSb) - S could take the form aSa or bSb

5

From these rules we can write S→aSa→abSba→ab∧ba → abba (which are

all palindromes)

To summarize the 3-steps derivation of abba in which rule two is applied

twice and rule one is applied once, using the → notation. The rules can be

written as: -

S→a/b/∧

S→aSa/bSb

S→aSa→bSb→ab∧ba=abba

In an expression such as aSa or bSb, the two alternatives are aSa & bSb and

not a & b direct.

Assignment:

Derive the following strings using the above production rules:

a) baab

6

b) aaaa

c) bbbb

7

d) abaaba

Example 4:

Given a CFG with the following definitions

i. Terminals a,b

ii. Non-terminals: S, A

iii. Production Rules

✓ S→AAA/AA

✓ A→AA/aA/Ab/A/B

String abaaba has the derivation tree:

8

When we concatenate the leaves of any derivation tree, we get a string

which is known as the yield of the tree. The above tree has 5 yields.

Example 5:

If we are given the string “a+a+a” with the following production rules:

-

 (i.) S→S+S

 (ii.) S→a

Left most derivation tree for some string – This is the process that looks

at the string from Left to Right following the production rules provided.

The left most derivation takes the format: -

S→S+S→a+S→a+S+S→a+a+S→a+a+a=a+(a+a)

b

A

A

A

a

A

a

A

A

A

a

a A

b

9

Right most derivation looks at the string from Right to Left.

S→S+S→S+S+S→a+S+S→a+a+S→a+a+a=(a+a)+a)

We can exhibit this structure by using left - a+(a+a) and right - (a+a) + a

derivation trees as follows: -

A two or more distinct derivation trees. The above CFG is said to be

ambiguous because it generates two distinct derivation trees. (Note that

there could be more than two).

A standard example of ambiguity is the If else Statements in

Programming languages.

a a

a

a

a a

10

Consider implementing the following problem in a Visual Basic

programming language: If Gender= M then male title is selected and if

Gender=F then female title is selected.

We could go on and check if the person is above 18 years and the

comment “Issue ID” is generated else “Deny ID” comment is generated.

11

References

1 Rowan G. & John T., (2009), Discrete Mathematics: Proofs, Structures

and Applications, CRC Press, ISBN: 9781439812808.

2 W. D. Wallis (2003), A Beginners Guide to Discrete Mathematics,

Springer Science & Business Media, ISBN: 978-0817642693.

3 Introduction to the theory of computation (3rd ed.), Michael, S.

Boston, Cengage Learning. ISBN-13: 978-1133187790, (2012).

4 Introduction to languages and the theory of computation (3rd ed.),

Martin, J., New York: McGraw-Hill. ISBN-13: 978-0072322002, (2002)

