
Object Oriented Programing 1

Lecture 11: Java Packages / API, Java Inheritance & Java Polymorphism

By

Elubu Joseph

MSci.IS

Email: josebulinda@gmail.com

or

jose@kumiuniversity.ac.ug

Object Progrming Oriented 1 1

mailto:josebulinda@gmail.com
mailto:jose@kumiuniversity.ac.ug

Agenda

1. Java Packages / API,

2. Java Inheritance &

3. Java Polymorphism

Object Progrming Oriented 1 2

Object Progrming Oriented 1 3

Java Package

Package is a collection of related classes. Java uses package to group
related classes, interfaces and sub-packages in any Java project.

We can assume package is a folder or a directory that is used to store similar files.

Using packages:-

1. avoid name conflicts

2. control access of class, interface and enumeration etc.

3. Makes it easier to locate the related classes

4. provides a good structure for projects with hundreds of classes and other files.

Object Progrming Oriented 1 4

Types of Java Package

Package can be built-in and user-defined, Java provides rich set of built-in
packages in form of API that stores related classes and sub-packages.

1. Built-in Package: javax, sql,math, util, lang, i/o etc are the example of
built-in packages.

2. User-defined-package: Java package created by user to categorize
their project's classes and interface are known as user-defined
packages.

Object Progrming Oriented 1 5

How to Create a Package

Creating a package in java is quite easy, simply include a package
command followed by name of the package as the first statement in
java source file.

Object Progrming Oriented 1 6

package lecture20;

public class employee{

String empId;

String name;

}

The above statement will create a
package name lecture20 where
employee.java file will be stored.

How to Create a Package using Netbeans IDE

We can also create packages though our IDEs after creating a project.
Lets create a package called Legged inside the project called Human.
First. Lets create a project above.
1. Click on File>New Project
2. Select project category e.g. Java with Ant
3. Click Java Application
4 Click Next

Object Progrming Oriented 1 7

How to Create a Package using Netbeans IDE

We can also create packages though our IDEs after creating a
project. Lets create a package called Legged inside the project called
Human.

First. Lets create a project above.

5. Enter Project name

6. Click Finish

Object Progrming Oriented 1 8

Creating Package using Netbeans
IDE
After creating the project, you can now create a package. To create a
package,

1. Right click on the project you just created

2. Point at New

3. Click Java Package

4. Enter the name of the package e.g. lecture20

5. Click Finish

Object Progrming Oriented 1 9

Object Progrming Oriented 1 10

When you see this display, then you are done

Additional points about package

1. Package statement must be first statement in the program even
before the import statement.

2. A package is always defined as a separate folder having the same
name as the package name.

3. Store all the classes in that package folder.

4. All classes of the package which we wish to access outside the
package must be declared public.

5. All classes within the package must have the package statement as
its first line.

6. All classes of the package must be compiled before use.

Object Progrming Oriented 1 11

How to import Java Package

To import java package into a class, we need to use java import keyword which is
used to access package and its classes into the java program.

Use import to access built-in and user-defined packages into your java source file so
that your class can refer to a class that is in another package by directly using its
name.

There are 3 different ways to refer to any class that is present in a different package:

Object Progrming Oriented 1 12

How to import Java Package +

There are 3 different ways to refer to any class that is present in a different
package:

1. without import keyword

2. import package with specified class

3. import package with all classes

Object Progrming Oriented 1 13

Accessing package without import
keyword

Object Progrming Oriented 1 14

If you use fully qualified name to import any class into your program, then only that
particular class of the package will be accessible in your program, other classes in the
same package will not be accessible.
With this approach, there is no need to use the import statement. But you will have to
use the fully qualified name every time you are accessing the class or the interface.
This is generally used when two packages have classes with same names. For

Example: java.util and java.sql packages contain Date class.

Accessing package without import
keyword+
Example
In this example, we are creating a class called A1 in package lecture10 and class called B1
in package lecture10_2, we are accessing it while creating its object of class A.

Object Progrming Oriented 1 15

package lecture10;

public class A1 {

public void msg(){

System.out.println(“Using fully qualified

names");

}

}

Accessing package without import
keyword+

Object Progrming Oriented 1 16

package lecture10_2;

class B1{

public static void main(String args[]) {

lecture10.A1 ob = new lecture10.A1(); //using

fully qualified name

ob.msg();

}

}

Note lecture10.A1 in the creation
of A1 class object.

Output: Using fully qualified
names

Import the Specific Class

Object Progrming Oriented 1 17

Package can have many classes but sometimes we want to
access only specific class in our program in that case, Java
allows us to specify class name along with package name.

If we use import packagename.classname statement then only
the class with name classname in the package will be available
for use.

Import the Specific Class- A1 class

Object Progrming Oriented 1 18

package lecture10;

public class A1 {

public void msg(){

System.out.println(“Using fully qualified

names");

}

}

Object Progrming Oriented 1 19

package lecture10_2;

import lecture10.A1;

class B1 {

public static void main(String args[]) {

A1 ob = new A1();

ob.msg();

}

}
Output: Using fully qualified
names

Import the Specific Class- B1 class

Import all classes of the package

Object Progrming Oriented 1 20

If we use packagename.*; statement, then all the classes and interfaces of this
package will be accessible but the classes and interface inside the sub-packages will
not be available for use.

The import keyword is used to make the classes of another package accessible to

the current package.
Example .

In this example, we created a class First in lecuture10 package that access it in
another class Second by using import keyword.

Import all classes of the package
First class

Object Progrming Oriented 1 21

package lecture10;

public class First {

public void msg(){

System.out.println(“Using fully qualified

names");

}

}

Object Progrming Oriented 1 22

package lecture10_2;

import lecture10.*;

class Second {

public static void main(String args[]) {

First ob = new First();

ob.msg();

}

}
Output: Using fully qualified
names

Import all classes of the package
Second class

Object Progrming Oriented 1 23

Inheritance (IS-A relationship)

Object Progrming Oriented 1 24

Inheritance is OOP features that provided a mechanism which allow a class
to inherit property of another class. When a Class extends another class it
inherits all non-private members including fields and methods.

Inheritance in Java can be best understood in terms of Parent and Child
relationship, also known as Super class(Parent) and Sub class(child) in Java
language.

Inheritance defines is-a relationship between a Super class and its Sub
class. extends and implements keywords are used to describe inheritance in
Java.

In Java, we have two types of relationship: Is-A relationship: Whenever one
class inherits another class, it is called an IS-A relationship. Has-A
relationship: Whenever an instance of one class is used in another class, it
is called HAS-A relationship.

Object Progrming Oriented 1 25

Inheritance (IS-A relationship)

Object Progrming Oriented 1 26

Using extends Keyword
Let us see how extends keyword is used to achieve Inheritance. It shows super class and sub-
class relationship.

Object Progrming Oriented 1 27

class Human { }

class Man extends Human {

....... //extends the property of

vehicle class

}

Now based on above example. In OOPs term we can say that, Human is super class of Man while
Man is sub class of Human. Hence achieving Man IS-A Human relaionship.

Simple example of Inheritance

Before moving ahead let's take a quick example and try to understand the
concept of Inheritance better.

In this example we will create two classes i.e Parent class(super) and Child
class(sub class), all located in lecture11 package. This is to help us
understand inheritance.

Object Progrming Oriented 1 28

Parent Class

Object Progrming Oriented 1 29

package lecture11;

class Parent {

public void p1() {

System.out.println("Parent method");

}

}

Child class

Object Progrming Oriented 1 30

package lecture11;

public class Child extends Parent{

public void c1() {

System.out.println("Child method");

}

public static void main(String[] args){

Child cob = new Child();

cob.c1(); //method of Child class

cob.p1(); //child object accessing method of Parent class

}

}
OUTPUT

Note.

Object Progrming Oriented 1 31

In the code above we have a class Parent which has a method p1(). We then

created a new class Child which inherits the class Parent using

the extends keyword and defines its own method c1().

Now by virtue of inheritance the class Child can also access

the public method p1() of the class Parent.

Inheriting variables of super class

All the members of super class implicitly inherits to the child class.
Member consists of instance variable and methods of the class.

Example

In this example the sub-class will be accessing the variable defined in the
super class.

Object Progrming Oriented 1 32

Vehicle Class-Super

Object Progrming Oriented 1 33

class Vehicle {

// variable defined

String vehicleType;

}

Car class - sub

Object Progrming Oriented 1 34

public class Car extends Vehicle {

String modelType;

public void showDetail(){

vehicleType = “Subaru";//accessing Vehicle class member

variable

modelType = "Sports";

System.out.println(modelType + " " + vehicleType);

}

public static void main(String[] args){

Car ob = new Car();

ob.showDetail();

}

}
OUTPUT

Types of Inheritance

Java mainly supports only three types of inheritance that are listed
below.
1. Single Inheritance
2. Multilevel Inheritance
3. Heirarchical Inheritance
NOTE: Multiple inheritance is not supported for classes but allowed
for interfaces in java. We can get a quick view of type of inheritance
from the image below.

Object Progrming Oriented 1 35

Types of inheritance

Object Progrming Oriented 1 36

ClassA

ClassB

1. Single Inheritance

ClassC

ClassA

ClassB

2. Multilevel Inheritance

ClassA

ClassCClassB

3. Hyrachical Inheritance

Single Inheritance
When a class extends to another class then it
forms single inheritance. In the example below,
we have two classes in which class A extends to
class B that forms single inheritance.

Object Progrming Oriented 1 37

class A{

int a = 60;

void show(){

System.out.println(“A = "+a);

}

}

public class B extends A{

public static void main(String[] args) {

B b = new B();

b.show();//child can access parant method show()

}

}

What will be the output here?

Single Inheritance program
explained

Here, we can notice that show() method is declared in class A, but
using child class B b, we can call it. That shows the inheritance
between these two classes.

Object Progrming Oriented 1 38

Multilevel Inheritance

When a class extends to another class that also extends some other class forms a multilevel
inheritance. For example a class C extends to class B that also extends to class A and all the
data members an methods of class A and B are now accessible in class C.

Example.

Object Progrming Oriented 1 39

class A{

int a = 60;

void show(){

System.out.println(“A = "+a);

}

}

class B extends A{

int b = 20;

void showB() {

System.out.println(“B = "+b);

}

}

Class C access Class A through B

OUTPUT:

A = 60

B = 20
Object Progrming Oriented 1 40

public class C extends B{

public static void main(String[] args){

C c = new C();

c.show();

c.showB();

}

}

Hierarchical Inheritance

When a class is extended by two or more classes, it forms hierarchical
inheritance.

For example, class B extends to class A and class C also extends to class
A in that case both B and C share properties of class A.

Object Progrming Oriented 1 41

class A{

int a = 60;

void show(){

System.out.println(“A = "+a);

}

}

class B extends A{

int b = 20;

void showB() {

System.out.println(“B = "+b);

}

}

Class C and Class B access A while in C.

Object Progrming Oriented 1 42

OUTPUT:

A = 60

B = 60

public class C extends B{

public static void main(String[] args){

C c = new C();

c.show();

B b = new B();

b.show();

}

}

Why multiple inheritance is not
supported in Java classes?
1. To remove ambiguity.

2. To provide more maintainable
and clear design.

Object Progrming Oriented 1 43

super keyword

Object Progrming Oriented 1 44

In Java, super keyword is used to refer to
immediate parent class of a child class. In other
words super keyword is used by a subclass
whenever it need to refer to its immediate super
class.

Object Progrming Oriented 1 45

Example of Child class referring to Parent class property

using super keyword

In this examle we will only focus on accessing the parent class property or
variables.

Parent1 class

Object Progrming Oriented 1 46

class Parent1{

String name;

}

Child1 class uses super keyword

Object Progrming Oriented 1 47

public class Child1 extends Parent1{

String name;

public void details(){

super.name = "Parent"; //refers to parent class

member

name = "Child";

System.out.println(super.name+" and "+name);

}

public static void main(String[] args) {

Child ob = new Child();

ob.details();

}

}

Output

Parent and Child

Object Progrming Oriented 1 48

Example of Child class calling Parent class constructor using super keyword

In this examle we will focus on accessing the parent class constructor

Parent Class with a constructor

Object Progrming Oriented 1 49

class Parent2 {

String name;

public Parent2(String n){

name = n;

}

}

Child2 class access Parent2 class constructor using
super keyword

Object Progrming Oriented 1 50

public class Child2 extends Parent2{

String name;

public Child2(String n1, String n2) {

super(n1); //passing argument to parent class constructor

this.name = n2;

}

public void details() {

System.out.println(super.name+" and "+name);

}

public static void main(String[] args) {

Child2 cobj = new Child2("Parent","Child member");

cobj.details();

}

}

Output: Parent and Child member

Object Progrming Oriented 1 51

Note:
When calling the parent class constructor from the child class using super
keyword, super keyword should always be the first line in the method/constructor
of the child class.

Qn. Can you use both this() and super()in a Constructor?

Yes, because both super() and this() can be used as statement inside a
constructor.

Purpose of Inheritance

It promotes the code reusabilty i.e the same methods and variables which
are defined in a parent/super/base class can be used in the child/sub/derived
class.

It promotes polymorphism by allowing method overriding.

Object Progrming Oriented 1 52

Disadvantages of Inheritance

Main disadvantage of using inheritance is that the two classes (parent and child
class) gets tightly coupled that means any change made in super class affect sub
classes as well.

Object Progrming Oriented 1 53

Object Progrming Oriented 1 54

Java Polymorphism

Polymorphism means "many forms", and it occurs when we have many classes that
are related to each other by inheritance.

Like we specified in the previous chapter; Inheritance lets us inherit attributes and
methods from another class. Polymorphism uses those methods to perform different
tasks. This allows us to perform a single action in different ways.

For example, think of a superclass called Animal that has a method

called animalSound(). Subclasses of Animals could be Pigs, Cats, Dogs, Birds - And

they also have their own implementation of an animal sound (the pig oinks, and the
cat meows, etc.):

Example

55

class Animal {
public void animalSound() {
System.out.println("The animal makes a sound");

}
}

class Pig extends Animal {
public void animalSound() {
System.out.println("The pig says: wee wee");

}
}

class Dog extends Animal {
public void animalSound() {
System.out.println("The dog says: bow wow");

}
}

56

Remember from the Inheritance chapter that we use the extends keyword to inherit from a

class.

Now we can create Pig and Dog objects and call the animalSound() method on both of

them:

Example
class Animal {
public void animalSound() {
System.out.println("The animal makes a sound");

}
}

class Pig extends Animal {
public void animalSound() {
System.out.println("The pig says: wee wee");

}
}

class Dog extends Animal {
public void animalSound() {
System.out.println("The dog says: bow wow");

}
}

57

class AnimalRunner {
public static void main(String[] args) {
Animal myAnimal = new Animal(); // Create a Animal object
Pig myPig = new Pig(); // Create a Pig object
Dog myDog = new Dog(); // Create a Dog object

myAnimal.animalSound();
myPig.animalSound();
myDog.animalSound();

}
}

Why And When To Use "Inheritance" and "Polymorphism"?

- It is useful for code reusability: reuse attributes and methods of an existing
class when you create a new class.

58

OUTPUT

Summary

1. Java Packages / API, (How to create packages, importance of using
packages etc.

2. Java Inheritance (types of inheritance, how to inherit/implement
why it is important etc.)

3. Java Polymorphism(Much on overriding etc.)

Object Progrming Oriented 1 59

Object Progrming Oriented 1 60

Thanks

Reference

What is is-A-relationship in java? GeeksforGeeks. (2021, December 1). Retrieved June 2, 2022, from
https://www.geeksforgeeks.org/what-is-is-a-relationship-in-
java/#:~:text=In%20Java%2C%20we%20have%20two,is%20called%20HAS%2DA%20relationship.

Inheritance (IS-a relationship) in Java. Studytonight.com. (n.d.). Retrieved June 2, 2022, from
https://www.studytonight.com/java/inheritance-in-java.php

Java package. Studytonight.com. (n.d.). Retrieved June 2, 2022, from https://www.studytonight.com/java/package-in-
java.php

Object Progrming Oriented 1 61

https://www.studytonight.com/java/inheritance-in-java.php

