
Object - Oriented Programming 2

Week 11. Iterator and ListIterator, ArrayList Class, LinkedList Class, HashSet Class and PriorityQueue Class

By Elubu Joseph - MSc.IS

Lecturer

Department of Information Technology

Kumi University

Email: josebulinda@gmail.com

jose@kumiuniversity.ac.ug

Object Oriented Programming 2 1

mailto:josebulinda@gmail.com
mailto:jose@kumiuniversity.ac.ug

Agenda

1. Iterator and ListIterator

2. ArrayList Class,

3. LinkedList Class,

4. HashSet Class and

5. PriorityQueue

Object Oriented Programming 2 2

Object Oriented Programming 2 3

Iterator and ListIterator

Object Oriented Programming 2 4

Iterator is an interface that is used to iterate the collection elements. It is part of java
collection framework. It provides some methods that are used to check and access
elements of a collection.
Iterator Interface is used to traverse a list in forward direction, enabling you to
remove or modify the elements of the collection. Each collection classes
provide iterator() method to return an iterator.

Accessing a Java Collection using
Iterators

To access elements of a collection, we can either use index if collection is list based or we need
to traverse the element. There are three possible ways to traverse through the elements of any
collection.

1. Using Iterator interface

2. Using ListIterator interface

3. Using for-each loop

Object Oriented Programming 2 5

Iterator Interface Methods

Method Description

boolean hasNext() Returns true if there are more elements in the collection. Otherwise,
returns false.

E next() Returns the next element present in the collection. Throws
NoSuchElementException if there is not a next element.

void remove() Removes the current element. Throws IllegalStateException if an attempt
is made to call remove() method that is not preceded by a call
to next() method.

Object Oriented Programming 2 6

Iterator Example Program

Object Oriented Programming 2 7

In this example, we are using
iterator() method of collection
interface that returns an
instance of Iterator interface.
After that we are using
hasNext() method that returns
true if collection contains
elements and within the loop,
obtain each element by
calling next() method.

import java.util.*;

class ITPro {

public static void main(String[] args) {

ArrayList< String> al = new ArrayList< String>();

al.add("BIT");

al.add("CIT");

al.add("ET");

al.add("DIT");

Iterator it = al.iterator(); //Declaring Iterator

while(it.hasNext()) {

System.out.print(it.next()+" ");

}

} }

Iterator Example Program
code+output

Object Oriented Programming 2 8

Object Oriented Programming 2 9

Accessing elements using ListIterator

Object Oriented Programming 2 10

ListIterator Interface is used to traverse a list in
both forward and backward direction. It is available to only those
collections that implements the ListInterface.

Methods of ListIterator

Method Description

void add(E obj) Inserts obj into the list in front of the element that will be returned by the next call to
next() method.

boolean hasNext() Returns true if there is a next element. Otherwise, returns false.

boolean hasPrevious() Returns true if there is a previous element. Otherwise, returns false.

E next() Returns the next element. A NoSuchElementException is thrown if there is not a next
element.

int nextIndex() Returns the index of the next element. If there is not a next element, returns the size of
the list.

Object Oriented Programming 2 11

Methods of ListIterator+

Object Oriented Programming 2 12

Method Description

E previous() Returns the previous element. A NoSuchElementException is thrown if
there is not a previous element.

int previousIndex() Returns the index of the previous element. If there is not a previous
element, returns -1.

void remove() Removes the current element from the list. An IllegalStateException is
thrown if remove() method is called before next() or previous() method is
invoked.

void set(E obj) Assigns obj to the current element. This is the element last returned by a
call to either next() or previous() method.

ListIterator Example
In this example, we are creating a program to traverse the elements of ArrayList using
ListIterator. ListIterator works only with list collection.

Object Oriented Programming 2 13

import java.util.*;

class ILTraverse {

public static void main(String[] args) {

ArrayList< String> al = new ArrayList< String>();

al.add("PEM"); al.add("CRE"); al.add("PHY"); al.add("CHEM");

ListIterator lob = al.listIterator();

while(lob.hasNext()){//In forward direction

System.out.print(lob.next()+" ");

}

System.out.println("Backward Traverse");

while(lob.hasPrevious()) {//In backward direction

System.out.print(lob.previous()+" ");

}

} }

ListIterator Example code and output

Object Oriented Programming 2 14

Object Oriented Programming 2 15

Collection Framework ArrayList

This class provides implementation of an array based data structure that is
used to store elements in linear order. This class implements List interface
and an abstract AbstractList class. It creates a dynamic array that grows
based on the elements strength.

Note!

We covered much about the class in lecture 10, we will therefore focus on
the areas we did not handle.

Object Oriented Programming 2 16

ArrayList Methods

The table below contains methods of Arraylist. We can use
them to manipulate its elements.

Object Oriented Programming 2 17

Method Description

void add(int index, E element) inserts the specified element at the specified position in a list.

boolean add(E e) appends the specified element at the end of a list.

boolean addAll(Collection<? extends
E> c)

appends all of the elements in the specified collection to the end of this list.

boolean addAll(int index,
Collection<? extends E> c)

appends all the elements in the specified collection, starting at the specified position of the
list.

void clear() removes all of the elements from this list.

void ensureCapacity(int
requiredCapacity)

enhances the capacity of an ArrayList instance.

E get(int index) fetches the element from the particular position of the list.

boolean isEmpty() returns true if the list is empty, otherwise false.

Method Description

int lastIndexOf(Object o) returns the index in this list of the last occurrence of the specified
element, or -1 if the list does not contain this element.

Object[] toArray() returns an array containing all of the elements in this list in the
correct order.

<T> T[] toArray(T[] a) returns an array containing all of the elements in this list in the
correct order.

Object clone() returns a shallow copy of an ArrayList.

boolean contains(Object o) returns true if the list contains the specified element

int indexOf(Object o) returns the index in this list of the first occurrence of the specified
element, or -1 if the List does not contain this element.

Object Oriented Programming 2 18

ArrayList Methods+

Method Description

E remove(int index) removes the element present at the specified position in the list.

boolean remove(Object o) removes the first occurrence of the specified element.

boolean removeAll(Collection<?> c) removes all the elements from the list.

boolean removeIf(Predicate<? super
E> filter)

removes all the elements from the list that satisfies the given predicate.

protected void removeRange(int
fromIndex, int toIndex)

removes all the elements lies within the given range.

void replaceAll(UnaryOperator<E>
operator)

replaces all the elements from the list with the specified element.

void trimToSize() trims the capacity of this ArrayList instance to be the list's current size.

Object Oriented Programming 2 19

ArrayList Methods++

Adding items into ArrayList Example
program

In this example, we added items into ArrayList to store string elements., we used add
method of list interface to add elements.

Object Oriented Programming 2 20

import java.util.*; import javax.swing.JOptionPane;

class AList {

public static void main(String[] args) {

ArrayList< String> al = new ArrayList< String>();

al.add("BIT");

al.add("MBA");

al.add("MIS");

al.add("B.COM");

JOptionPane.showMessageDialog(null, al);

} }

ArrayList Class++++ Program
Code+Output

Object Oriented Programming 2 21

Removing Elements from ArrayList
To remove elements from the list, we use remove() method that removes the specified elements. We can
also pass index value to remove the elements of it.

Object Oriented Programming 2 22

import java.util.*;

class RAList {

public static void main(String[] args) {

ArrayList< String> al = new ArrayList< String>();

al.add("BIT");

al.add("MBA");

al.add("MIS");

al.add("B.COM");

System.out.println("Inserted Elements\n"+ al);

al.remove(3);

System.out.println("After removing 1 Element\n"+ al);

} }

Removing Elements from ArrayList
code and output

Object Oriented Programming 2 23

Note! Element at
index 3 has been
removed from the
list.

Get size of ArrayList

Sometimes we may want to know number of elements an ArrayList holds. In that
case we use size() method that returns size of ArrayList which is equal to number of
elements present in the list.

In this case, we will only add the following code into the code above.

Object Oriented Programming 2 24

for(String el : al) {

System.out.println(el);

}

System.out.println("Total Elements: "+al.size());

Getting ArrayList Size program

Object Oriented Programming 2 25

import java.util.*;

class AraySize {

public static void main(String[] args) {

ArrayList< String> al = new ArrayList< String>();

al.add("BIT");

al.add("MBA");

al.add("MIS");

al.add("B.COM");

System.out.println("Inserted Elements\n"+ al);

for(String el : al) {

System.out.println(el);

}

System.out.println("Total Elements: "+al.size());

al.remove(3);

System.out.println("After removing 1 Element\n"+ al);

System.out.println("Total Elements: "+al.size());

} }

Getting ArrayList Size program
code+output

Object Oriented Programming 2 26

Sorting ArrayList Elements

To sort elements of an ArrayList, Java provides a class Collections that includes a
static method sort(). In this example, we are using sort method to sort the elements
by adding the following line of code in the program above.

Object Oriented Programming 2 27

Collections.sort(al);

// Traversing ArrayList

for(String el : al) {

System.out.println(el);

}

Assignment. Complete the above program by adding the above code.

Object Oriented Programming 2 28

LinkedList class
Java LinkedList class provides implementation of linked-list data structure. It used doubly linked list
to store the elements. It implements List, Deque and Queue interface and extends
AbstractSequentialList class. We shall see the declaration of this class in the next slide but lets first
look at its features.
Features
1.LinkedList class extends AbstractSequentialList and implements List, Deque and Queue interface.
2. It can be used as List, stack or Queue as it implements all the related interfaces.
3. It is dynamic in nature i.e it allocates memory when required. Therefore insertion and deletion

operations can be easily implemented.
4. It can contain duplicate elements and it is not synchronized.
5.Reverse Traversing is difficult in linked list.
6. In LinkedList, manipulation is fast because no shifting needs to be occurred.

Object Oriented Programming 2 29

LinkedList class Declaration and
Constructors

LinkedList is declared as below.

LinkedList class has two constructors.

Note. Like ArrayList, we will only cover some few things we did not handle in
lecture 10.

Object Oriented Programming 2 30

LinkedList() // It creates an empty LinkedList

LinkedList(Collection c)

public class LinkedList<E> extends AbstractSequentialList<E>

implements List<E>, Deque<E>, Cloneable, Serializable

LinkedList Methods
The below table contains methods of LinkedList. We can use them to manipulate its elements.

Object Oriented Programming 2 31

Method Description
boolean add(E e) It appends the specified element to the end of a list.
void add(int index, E element) It inserts the specified element at the specified position index in a list.
boolean addAll(Collection<?
extends E> c)

It appends all of the elements in the specified collection to the end of this list.

boolean addAll(Collection<?
extends E> c)

It appends all of the elements in the specified collection to the end of this list,
in the order that they are returned by the specified collection's iterator.

boolean addAll(int index,
Collection<? extends E> c)

It appends all the elements in the specified collection, starting at the specified
position of the list.

void addFirst(E e) It inserts the given element at the beginning of a list.
void addLast(E e) It appends the given element to the end of a list.

LinkedList Methods
The below table contains methods of LinkedList. We can use them to manipulate its elements.

Object Oriented Programming 2 32

Method Description
void clear() It removes all the elements from a list.
Object clone() It returns a shallow copy of a list.
boolean contains(Object o) It returns true if a list contains a specified element.
Iterator<E>
descendingIterator()

It returns an iterator over the elements in a deque in reverse sequential order.

E element() It retrieves the first element of a list.
E get(int index) It returns the element at the specified position in a list.
E getFirst() It returns the first element in a list.
E getLast() It returns the last element in a list.
int indexOf(Object o) It returns the index in a list of the first occurrence of the specified element, or -1

if the list does not contain any element.

LinkedList Methods
The below table contains methods of LinkedList. We can use them to manipulate its elements.

Object Oriented Programming 2 33

Method Description
int lastIndexOf(Object o) is used to return the index in a list of the last occurrence of the specified element, or -1 if the list

does not contain any element.
ListIterator<E> listIterator(int
index)

returns a list-iterator of the elements in proper sequence, starting at the specified position in the
list.

boolean offer(E e) adds the specified element as the last element of a list.
boolean offerFirst(E e) inserts the specified element at the front of a list.
boolean offerLast(E e) inserts the specified element at the end of a list.
E peek() retrieves the first element of a list
E peekFirst() retrieves the first element of a list or returns null if a list is empty.
E peekLast() retrieves the last element of a list or returns null if a list is empty.
E poll() retrieves and removes the first element of a list.
E pollFirst() retrieves and removes the first element of a list, or returns null if a list is empty.

LinkedList Methods
The below table contains methods of LinkedList. We can use them to manipulate its elements.

Object Oriented Programming 2 34

Method Description
E pollLast() retrieves and removes the last element of a list, or returns null if a list is empty.
E pop() pops an element from the stack represented by a list.
void push(E e) pushes an element onto the stack represented by a list.
E remove() is used to retrieve and removes the first element of a list.
E remove(int index) is used to remove the element at the specified position in a list.
boolean remove(Object o) is used to remove the first occurrence of the specified element in a list.
E removeFirst() removes and returns the first element from a list.
boolean removeFirstOccurrence(Object o) removes the first occurrence of the specified element in a list (when traversing the list from head to tail).
E removeLast() removes and returns the last element from a list.
boolean removeLastOccurrence(Object o) removes the last occurrence of the specified element in a list (when traversing the list from head to tail).
E set(int index, E element) replaces the element at the specified position in a list with the specified element.
int size() returns the number of elements in a list.

(studytonight.com)

Add and Remove Elements to
LinkedList

Object Oriented Programming 2 35

To add elements into LinkedList, we used add() method. It adds elements into the
list in the insertion order. Refer to lecture 10.

Removing Elements
To remove elements from the list, we use remove() method that remove the specified
elements from the list as seen in ArrayList element removal above. We can also pass index
value to remove the elements of it.

Get size of LinkedList

Object Oriented Programming 2 36

Sometimes we want to know number of elements an LinkedList holds. In that case we
use size() then returns size of LinkedList which is equal to number of elements
present in the list.
Just like we did in Arraylist Size extraction above, lets do it here.

Getting LinkedList Size program

Object Oriented Programming 2 37

import java.util.*;

class TCountries {

public static void main(String[] args) {

LinkedList< String> al = new LinkedList< String>();

al.add("Uganda");

al.add("China");

al.add("South Korea");

al.add("Lybia");

System.out.println("Inserted Elements\n"+ al);

System.out.println("Total Elements: "+al.size());

al.remove(3);

System.out.println("After removing 1 Element\n"+ al);

System.out.println("Total Elements: "+al.size());

} }

Getting ArrayList Size program
code and output

Object Oriented Programming 2 38

Sorting LinkedList Elements

To sort elements of an LinkedList, Java provides a class Collections that
includes a static method sort(). In this example, we are using sort method to
sort the elements.
The lines of code below will help us sort or LinkedList in the program above.

Object Oriented Programming 2 39

Collections.sort(al); // Traversing LinkedList

for(String el : al){

System.out.println(el);

}

Sorting LinkedList sample
program code

Object Oriented Programming 2 40

import java.util.*;

class sortLList {

public static void main(String[] args) {

LinkedList< String> al = new LinkedList< String>();

al.add("Uganda");

al.add("China");

al.add("South Korea");

al.add("Lybia");

Collections.sort(al); // Traversing LinkedList

for(String el : al){

System.out.println(el);

}

} }

Sorting LinkedList sample program code
and output

Object Oriented Programming 2 41

LinkedList Traverse using for-each
loop

Object Oriented Programming 2 42

for-each version of for loop can also be used for traversing the elements of a collection.
But this can only be used if we don't want to modify the contents of a collection and we
don't want any reverse access. for-each loop can cycle through any collection of object
that implements Iterable interface.

Example program LinkedList Traverse
using for-each loop

Object Oriented Programming 2 43

import java.util.*;

class forTraverse {

public static void main(String[] args) {

LinkedList< String> al = new LinkedList< String>();

al.add("PEM"); al.add("CRE"); al.add("PHY");

al.add("CHEM");

for(String st : al) {

System.out.print(st+" ");

}

}

}

Example program LinkedList
Traverse using for-each loop code
and output

Object Oriented Programming 2 44

Example program LinkedList Traverse
using normal for loop code and output

Object Oriented Programming 2 45

import java.util.*;

class forTraverse {

public static void main(String[] args) {

LinkedList< String> al = new LinkedList< String>();

al.add("LOVE"); al.add("HATE"); al.add("COME"); al.add("GO");

for(int test = 0; test<al.size(); test++) {

System.out.print(al+" ");

}

}

}

Object Oriented Programming 2 46

Example program LinkedList Traverse
using for loop code and output

Note! Total
number of items
in the list means
the number of
rounds to loop.

Object Oriented Programming 2 47

Priority Queue
is an abstract data type that is similar to a queue, and every element has
some priority value associated with it.

The priority of the elements in a priority queue determines the order in
which elements are served (i.e., the order in which they are removed). If in
any case the elements have same priority, they are served as per their
ordering in the queue.

Object Oriented Programming 2 48

PriorityQueue Class +

Important features
1.extends the AbstractQueue class.

2.provides the facility of using queue.

3.It does not order the elements in FIFO manner.

Object Oriented Programming 2 49

PriorityQueue Class Constructors

PriorityQueue has six constructors.
In all cases, the capacity grows automatically as elements are added.

Object Oriented Programming 2 50

PriorityQueue() //creates an empty queue. By default, its starting

capacity is 11

PriorityQueue(int capacity) //creates a queue that has the specified

initial capacity

PriorityQueue(int capacity, Comparator comp) //creates a queue with the

specified capacity and comparator

//The last three constructors create queues that are initialized with

elements of Collection passed in c

PriorityQueue(Collection c)

PriorityQueue(PriorityQueue c)

PriorityQueue(SortedSet c)

Note: If no comparator is specified when a PriorityQueue is constructed,
then the default comparator for the type of data stored in the queue is used.

The default comparator will order the queue in ascending order. Thus, the
head of the queue will be the smallest value. However, by providing a
custom comparator, you can specify a different ordering scheme.

Object Oriented Programming 2 51

PriorityQueue Class Constructors +

PriorityQueue class example program

In this
example we
are creating
a Priority
Queue that
store and
remove
elements.

Object Oriented Programming 2 52

Import java.util.*;

class PQueue{

public static void main(String args[]) {

PriorityQueue<String> qe=new PriorityQueue<String>();

qe.add("MOVE"); qe.add("FORWARD"); qe.add("WITH");

qe.add("STUDIES");

System.out.println("Queue Home:"+qe.element());

System.out.println("Queue End:"+qe.peek());

System.out.println("Looping queue elements:");

Iterator loop = qe.iterator();

while(loop.hasNext()){

System.out.println(loop.next()); }

qe.remove(); qe.poll();

System.out.println("After removing two elements:");

Iterator loopa =qe.iterator();

while(loopa.hasNext()){

System.out.println(loopa.next()); }

} }

PriorityQueue Class Constructors +

Object Oriented Programming 2 53

Note! Priority given to queue
elements based below.

Object Oriented Programming 2 54

HashSet Class

Java HashSet class is used to store unique elements. It uses hash table internally to store the
elements. It implements Set interface and extends the AbstractSet class. Declaration of the
HashSet class is given below.

Decalration

Object Oriented Programming 2 55

public class HashSet<E>extends AbstractSet<E>implements Set<E>,

Cloneable, Serializable

HashSet Class+

Important Points is that HashSet Class:

1.creates a collection that uses hash table for storage. A hash table
stores information by using a mechanism called hashing.

2.HashSet does not maintain any order of elements.

3.HashSet contains only unique elements.

4.allows to store null value.

5.is non synchronized.

6.is the best approach for search operations.

7.The initial default capacity of HashSet is 16. (studytonight.com)

Object Oriented Programming 2 56

HashSet Methods

Method Description

add(E e) It adds the specified element to this set if it is not already
present.

clear() It removes all of the elements from the set.

clone() It returns a shallow copy of this HashSet instance: the
elements themselves are not cloned.

contains(Object o) It returns true if this set contains the specified element.

Object Oriented Programming 2 57

HashSet Methods

Method Description

isEmpty() It returns true if this set contains no elements.

iterator() It returns an iterator over the elements in this set.

remove(Object o) It removes the specified element from this set if it is present.

size() It returns the number of elements in the set.

spliterator() It creates a late-binding and fail-fast Spliterator over the
elements in the set.

Object Oriented Programming 2 58

(studytonwight.com)

Add to and Remove Elements
from HashSet
In this example, we are creating a HashSet that store string values and remove some.
Since HashSet does not store duplicate elements, we tried to add a duplicate elements
but the output contains only unique elements.

Object Oriented Programming 2 59

Add to and Remove Elements from
HashSet sample program

Object Oriented Programming 2 60

import java.util.*;

class AddRemoveHSet {

public static void main(String args[]){ // Creating HashSet

HashSet<String> hs = new HashSet<String>();

hs.add("Plants"); hs.add("Humans"); hs.add("Clouds");

hs.add("Plants"); hs.add("Wind"); hs.add("Water"); //

System.out.println(hs);

hs.remove("Humans");

System.out.println ("After Removing 1 Element: \n"+hs);

}

}

Object Oriented Programming 2 61

Add to and Remove Elements from
HashSet sample program code and
output

Assignment

1. Write a program that returns the size of a HashSet.

2. Modify program created in 1 above to traverse through the
elements using for-each loop.

Object Oriented Programming 2 62

Summary

1. Iterator and ListIterator; had a recap on Iterator then looked at
ListIterator(How it can be used in dealing with List Elements.) etc.

2. ArrayList Class looked at methods, important features and sampled some
few methods,

3. LinkedList Class; definition, looked at methods, important features etc.
4. HashSet Class; definition, declaration, methods, use of add(), remove etc.
5. PriorityQueue; declaration, key teams and features, creating priority

queue, methods, iteration of elements etc.

Object Oriented Programming 2 63

Object Oriented Programming 2 64

Thanks

References
Accessing a Java collection using iterators. Studytonight.com. (n.d.). Retrieved November 9, 2022, from
https://www.studytonight.com/java/iterator-in-collection.php

Java Collection Framework Arraylist. Studytonight.com. (n.d.). Retrieved November 9, 2022, from
https://www.studytonight.com/java/arraylist-in-collection-framework.php

Java Collection Framework Hashset. Studytonight.com. (n.d.). Retrieved November 8, 2022, from
https://www.studytonight.com/java/hashset-in-collection-framework.php

Java Collection Framework Linked List. Studytonight.com. (n.d.). Retrieved November 7, 2022, from
https://www.studytonight.com/java/linkedlist-in-collection-framework.php

Object Oriented Programming 2 65

