
Object - Oriented Programming 2

Week 13. Legacy Classes, HashTable Class, Collection Class, Comparable Interface, and Comparator Interface

By Elubu Joseph - MSc.IS

Lecturer 

Department of Information Technology 

Kumi University

Email: josebulinda@gmail.com

jose@kumiuniversity.ac.ug

Object Oriented Programming 2 1

mailto:josebulinda@gmail.com
mailto:jose@kumiuniversity.ac.ug


Agenda

1. Legacy Classes

2. HashTable Class,

3. Collection Class 

4. Comparable interface, 

5. Comparator Interface 

Object Oriented Programming 2 2



Object Oriented Programming 2 3



Legacy Classes and Legacy interface

Legacy classes are classes that had the features of collection framework before
collection was added. Collection frame was added on Java 2 SE. However, when
the collection was added these classes were re-enginered.

All legacy classes and interface were redesign by JDK 5 to support Generics. In
general, the legacy classes are supported because there is still some code that uses
them

Object Oriented Programming 2 4



Legacy Classes and Legacy 
interface+
The following are the legacy classes defined by java.util package
1.Dictionary
2.HashTable
3.Properties
4.Stack
5.Vector
NOTE: All the legacy classes are synchronized
There is only one legacy interface called Enumeration. 

Object Oriented Programming 2 5



Dictionary class

1.Dictionary is an abstract class.

2.It represents a key/value pair and operates much like Map.

3.Although it is not currently deprecated, Dictionary is classified as
obsolete, because it is fully superseded by Map class, which reason we
will not talk much about it here.

Object Oriented Programming 2 6



Object Oriented Programming 2 7



HashTable class
HashTable class is one of the legacy classes that was reengineered in JDK 5 when Java
collection framework was introduced.

Important features

1.Like HashMap, HashTable also stores key/value pair. However neither keys nor values can
be null.

2.It contains unique elements.

3.It doesn't allow null key or value.

4.The initial default capacity of Hashtable is 11.

5.is synchronized while HashMap is not.

6.Hashtable has following four constructor
Object Oriented Programming 2 8



Difference between HashMap and 
Hashtable

HashTable HashMap

Hashtable class is synchronized. HashMap is not synchronized.

Because of Thread-safe, HashTable is 
slower than HashMap

HashMap works faster.

Neither key nor values can be null Both key and values can be null

Order of table remain constant over 
time.

does not guarantee that order of map 
will remain constant over time.

Object Oriented Programming 2 9



Java Collection Framework 
HashTable
HashTable class stores elements in key-value pair. It does not allow null key and
null values. It is synchronized version of HashMap.

It extends Dictionary class and implements Map interface.

Declaration

Object Oriented Programming 2 10

public class Hashtable<K,V>extends Dictionary<K,V>implements Map<K,V>, Cloneable, Serializable



HashTable class Constructors
Constructor Description

Hashtable() creates an empty hashtable having the initial default capacity 
and load factor.

Hashtable(int capacity) accepts an integer parameter and creates a hash table that 
contains a specified initial capacity.

Hashtable(int capacity, float 
loadFactor)

is used to create a hash table having the specified initial 
capacity and loadFactor.

Hashtable(Map<? extends K,? 
extends V> t)

creates a new hash table with the same mappings as the given 
Map.

Object Oriented Programming 2 11



HashTable Class Methods

Method Description

void clear() emptys the hash table.

Object clone() returns a shallow copy of the Hashtable.

V compute(K key, BiFunction<? super K,? 
super V,? extends V> remappingFunction)

computes a mapping for the specified key and its 
current mapped value.

V computeIfAbsent(K key, Function<? super 
K,? extends V> mappingFunction)

computes its value using the given mapping 
function.

Enumeration elements() returns an enumeration of the values in the hash 
table.

Object Oriented Programming 2 12



HashTable Class Methods+
Method Description

Set<Map.Entry<K,V>> 
entrySet()

returns a set view of the mappings contained in the map.

boolean equals(Object o) compares the specified Object with the Map.

void forEach(BiConsumer<? 
super K,? super V> action)

performs the given action for each entry in the map until all 
entries have been processed or the action throws an exception.

V getOrDefault(Object key, V 
defaultValue)

returns the value to which the specified key is mapped, or 
defaultValue if the map contains no mapping for the key.

int hashCode() returns the hash code value for the Map
Object Oriented Programming 2 13



HashTable Class Methods++
Method Description

Enumeration<K> keys() returns an enumeration of the keys in the hashtable.

Set<K> keySet() returns a Set view of the keys contained in the map.

V merge(K key, V value, 
BiFunction<? super V,? super V,? 
extends V> remappingFunction)

if the specified key is not already associated with a value or 
is associated with null, associates it with the given non-null 
value.

V put(K key, V value) inserts the specified value with the specified key in the hash 
table.

void putAll(Map<? extends K,? 
extends V> t))

is used to copy all the key-value pair from map to hashtable.

Object Oriented Programming 2 14



HashTable Class Methods+++

Method Description

V putIfAbsent(K key, V 
value)

If the specified key is not already associated with a value (or is 
mapped to null) associates it with the given value and returns null, 
else returns the current value.

boolean remove(Object 
key, Object value)

removes the specified values with the associated specified keys from 
the hashtable.

V replace(K key, V value) replaces the specified value for a specified key.

String toString() returns a string representation of the Hashtable object.

Collection values() returns a collection view of the values contained in the map.
Object Oriented Programming 2 15



HashTable Class Methods++++

Method Description

boolean contains(Object value) This method returns true if some value equal to the value exists 
within the hash table, else return false.

boolean containsValue(Object 
value)

This method returns true if some value equal to the value exists 
within the hash table, else return false.

boolean containsKey(Object 
key)

This method return true if some key equal to the key exists 
within the hash table, else return false.

boolean isEmpty() This method returns true if the hash table is empty; returns false 
if it contains at least one key.

Object Oriented Programming 2 16



HashTable Class Methods+++++

Method Description

protected void rehash() is used to increase the size of the hash table and rehashes all of its 
keys.

V get(Object key) This method returns the object that contains the value associated with 
the key.

V remove(Object key) is used to remove the key and its value. This method returns the value 
associated with the key.

int size() returns the number of entries in the hash table.

Object Oriented Programming 2 17

(Studytonight.com)



Creating and Adding Elements into 
HashTable 

In this example, we will create a HashTable that takes elements of string and integer
type pair. To create HashTable we will utilize the following code.

To insert elements into the HashTable, we are using put() method that adds new
elements. It takes two argument: First is key and Second is value.

Object Oriented Programming 2 18

Hashtable<String,Integer> ht = new Hashtable<String,Integer>();

ht.put("A",700); 

ht.put("B",200); We have just added two elements into the 
HashTable called ht.



Creating and Adding Elements into 
HashTable code

Object Oriented Programming 2 19

import java.util.*; 

class HTPro1 { 

public static void main(String args[]) { 

// Creating Hashtable

Hashtable<String,Integer> ht = new

Hashtable<String,Integer>(); 

// Adding elements

ht.put("A",700); ht.put("N",677); ht.put("T",700); 

ht.put("B",200);ht.put("C",799); 

// Displaying Hashtable

System.out.println(ht); 

} }



Creating and Adding Elements into 
HashTable code and output

Object Oriented Programming 2 20



Example: Program to Search for a key 
or value in a HashTable

HashTable provides various methods such as contains(), containsKey() etc to search for an element 
in the HashTable. Contains() method search for specified value while containsKey() method search 
for specified key. We will therefore add the following code into our program above to be able to 
search for items in our HashTable created above.

Object Oriented Programming 2 21

// Search for a value

boolean val = ht.contains(400); 

System.out.println("is 400 present: "+val); 

// Search for a key

val = ht.containsKey(“K"); 

System.out.println("is K present: "+val); 



Example: Program to Search for a key 
or value in a HashTable+Code

Object Oriented Programming 2 22

import java.util.*; 

class HTPro1 { 

public static void main(String args[]) { 

// Creating Hashtable

Hashtable<String,Integer> ht = new Hashtable<String,Integer>(); 

// Adding elements

ht.put("A",700); ht.put("N",677); ht.put("T",400); 

ht.put("B",200);ht.put("C",799); 

// Displaying Hashtable

System.out.println(ht); 

// Search for a value

boolean val = ht.contains(400); 

System.out.println("is 400 present: "+val); 

// Search for a key

val = ht.containsKey(“K"); 

System.out.println("is K present: "+val); 

} }



Object Oriented Programming 2 23

Example: Program to Search for a key or 
value in a HashTable+Code and output



Adding Elements to Hashtable

Object Oriented Programming 2 24

To insert elements into the HashTable, we have use put() method that adds new
elements. It takes two argument: first is key and second is value.

Note: This class does not allow Null values. In the example below, we will try
to insert elements into a Hastable with one null value.



Adding elements into a HashTable 
with null values

Object Oriented Programming 2 25

import java.util.*; 

class addEtoHT { 

public static void main(String args[]) {

Hashtable<String,Integer> ht = new

Hashtable<String,Integer>(); 

ht.put("A",100);ht.put("B",500); 

ht.put("C",300); ht.put("D",400); 

ht.put(null, 0); // error: no null allowed // 

Displaying Hashtable

System.out.println(ht); 

} 

}



Adding elements into a HashTable 
with null value-output error.
Note that the above program generated NullPointerException caused by null values in the HashTable list on 
line 8 of addEtoHT class.

Object Oriented Programming 2 26

Enter the value to solve this problem



Object Oriented Programming 2 27



Properties class

Properties class is one of the legacy classes that supported some of the functionalities
of collection framework before the said framework was added to java. The following
are some of the important features of this class.

1.Properties class extends Hashtable class.

2.It is used to maintain list of value in which both key and value are String

3.Properties class define two constructor

Object Oriented Programming 2 28

Properties() //creates a Properties object that has no default values

Properties(Properties propdefault) // creates an object that uses 

propdefault for its default values.



Properties class+

4. One advantage of Properties over Hashtable is that we can specify a default
property that will be useful when no value is associated with a certain key.

Note: In both cases, the property list is empty

5. In Properties class, you can specify a default property that will be returned if no
value is associated with a certain key.

Object Oriented Programming 2 29



Example of Properties class program

Object Oriented Programming 2 30

import java.util.*; 

public class PropTest { 

public static void main(String[] args) { 

Properties pt = new Properties(); 

pt.put("Java", "James Ghosling"); 

pt.put("C++", "Bjarne Stroustrup"); 

pt.put("C", "Dennis Ritchie"); 

pt.put("C#", "Microsoft Inc."); 

Set< ?> creator = pt.keySet(); 

for(Object ob : creator) { 

System.out.println(ob+" was created by "+ 

pt.getProperty((String)ob) ); 

} 

} }



Example of Properties class 
program+code and output

Object Oriented Programming 2 31



Stack class
Stack class is a legacy class.
1. Stack class extends Vector.

2. It follows last-in, first-out principle for the stack elements.

3. It defines only one default constructor

4. If you want to put an object on the top of the stack, call push() method. If you want to remove and return the
top element, call pop() method. An EmptyStackException is thrown if you call pop() method when the
invoking stack is empty.

5. You can use peek() method to return, but not remove the top object. The empty() method returns true if
nothing is on the stack. The search() method determines whether an object exists on the stack and returns the
number of pops that are required to bring it to the top of the stack.

Object Oriented Programming 2 32

Stack() //This creates an empty stack



Example of Stack program

Object Oriented Programming 2 33

import java.util.*; 

class StackPro { 

public static void main(String args[]) { 

Stack sk = new Stack(); 

sk.push(11); sk.push(22); 

sk.push(33); sk.push(44); 

sk.push(55); 

Enumeration e1 = sk.elements(); 

while(e1.hasMoreElements()) 

System.out.print(e1.nextElement()+" "); 

sk.pop(); sk.pop(); 

System.out.println("\nAfter popping out two elements"); 

Enumeration e2 = sk.elements(); 

while(e2.hasMoreElements()) 

System.out.print(e2.nextElement()+" "); 

} }



Example of Stack program code and 
output

Note: pop() has 
deleted two 
elements since it 
was called twice.

Object Oriented Programming 2 34



Vector class
Vector is one of the legacy classes

1.Vector is similar to ArrayList which represents a dynamic array.

2.There are two differences between Vector and ArrayList; First, Vector is synchronized
while ArrayList is not, and Second, it contains many legacy methods that are not part
of the Collections Framework.

3.With the release of JDK 5, Vector also implements Iterable. This means that Vector is
fully compatible with collections, and a Vector can have its contents iterated by the
for-each loop.

Object Oriented Programming 2 35



Vector class Methods

Vector defines several legacy methods. Lets see some important legacy methods 
defined by Vector class.

Object Oriented Programming 2 36

Method Description

void addElement(E element) adds element to the Vector

E elementAt(int index) returns the element at specified index

Enumeration elements() returns an enumeration of element in vector

E firstElement() returns first element in the Vector

E lastElement() returns last element in the Vector

void removeAllElements() removes all elements of the Vector



Vector class constructors

Vector class has following 4 constructor as seen below.

Object Oriented Programming 2 37

Vector() //This creates a default vector, which has an 

initial size of 10.

Vector(int size) //This creates a vector whose initial 

capacity is specified by size.

Vector(int size, int incr) //This creates a vector whose 

initial capacity is specified by size and whose increment 

is specified by incr. The increment specifies the number of 

elements to allocate each time when a vector is resized for 

addition of objects.

Vector(Collection c) //This creates a vector that contains 

the elements of collection c.



Example of Vector Program

Object Oriented Programming 2 38

import java.util.*; 

public class TestVector { 

public static void main(String[] args) { 

Vector<Integer> ve = new Vector<Integer>(); 

ve.add(70); ve.add(20); ve.add(98); 

ve.add(40); ve.add(50); ve.add(60); 

Enumeration<Integer> en = ve.elements(); 

while(en.hasMoreElements()){ 

System.out.println(en.nextElement()+” ”); 

} 

} }



Example of Vector Program code and 
output

Object Oriented Programming 2 39



Object Oriented Programming 2 40



Collection Class

is designed to provide methods for searching, sorting, copying etc. It consists
exclusively of built-in static methods that operate on or return collections. It
contains polymorphic algorithms that operate on collections.

This class is located into java.util package. The declaration of this class is given
below.

Declaration

Object Oriented Programming 2 41

public class Collections extends Object

It inherits Object class and all the methods of this class throw a NullPointerException if the 
object is null.



Collections Methods

Method Description

addAll() adds all of the specified elements to the specified collection.

binarySearch() searches the list for the specified object and returns their position in a 
sorted list.

copy() copies all the elements from one list into another list.

disjoint() returns true if the two specified collections have no elements in 
common.

emptyEnumeration() fetches an enumeration that has no elements.

emptyIterator() fetches an Iterator that has no elements.

Object Oriented Programming 2 42



Collections Methods+++

Method Description

emptyList() fetches a List that has no elements.

emptyListIterator() fetches a List Iterator that has no elements.

emptyMap() returns an empty map which is immutable.

emptyNavigableMap() returns an empty navigable map which is immutable.

emptyNavigableSet() returns an empty navigable set which is immutable in nature.

emptySet() returns the set that has no elements.

Object Oriented Programming 2 43



Collections Methods++

Method Description

emptySortedMap() returns an empty sorted map which is immutable.

emptySortedSet() is used to get the sorted set that has no elements.

enumeration() is used to get the enumeration over the specified collection.

fill() is used to replace all of the elements of the specified list with the specified 
elements.

list() is used to get an array list containing the elements returned by the specified 
enumeration in the order in which they are returned by the enumeration.

max() is used to get the maximum value of the given collection.

Object Oriented Programming 2 44



Collections Methods++

Method Description

min() is used to get the minimum value of the given collection.

nCopies() is used to get an immutable list consisting of n copies of the specified object.

replaceAll() is used to replace all occurrences of one specified value in a list with the other 
specified value.

reverse() is used to reverse the order of the elements in the specified list.

reverseOrder() is used to get the comparator that imposes the reverse of the natural ordering on a 
collection.

rotate() is used to rotate the elements in the specified list by a given distance.

Object Oriented Programming 2 45



Collections Methods+

Method Description

shuffle() is used to randomly reorders the specified list elements using a default randomness.

sort() is used to sort the elements presents in the specified list of collection in ascending 
order.

swap() is used to swap the elements at the specified positions in the specified list.

synchronizedCollection() is used to get a synchronized (thread-safe) collection backed by the specified 
collection.

synchronizedList() is used to get a synchronized (thread-safe) collection backed by the specified list.

synchronizedMap() is used to get a synchronized (thread-safe) map backed by the specified map.

Object Oriented Programming 2 46



Collections Methods+
Method Description

synchronizedNavigableMap() is used to get a synchronized (thread-safe) navigable map backed by the 
specified navigable map.

synchronizedNavigableSet() is used to get a synchronized (thread-safe) navigable set backed by the 
specified navigable set.

synchronizedSet() is used to get a synchronized (thread-safe) set backed by the specified set.

synchronizedSortedMap() is used to get a synchronized (thread-safe) sorted map backed by the specified 
sorted map.

synchronizedSortedSet() is used to get a synchronized (thread-safe) sorted set backed by the specified 
sorted set.

synchronizedNavigableMap() is used to get a synchronized (thread-safe) navigable map backed by the 
specified navigable map.Object Oriented Programming 2 47



Example: Finding min and max 
elements and sorting elements

Object Oriented Programming 2 48

The collections class provides two methods max() and min() that can be used to fetch 
max and min values from a collection. Therefore to do this, we will have to include 
the following lines of code into our program called MinMax.

int min = Collections.min(list); // Find max element

int max = Collections.max(list); // Displaying data

System.out.println("Minimum element : "+ min); 

System.out.println("Maximum element : "+ max);



Example: Finding min and max elements and 
sorting elements + code

Object Oriented Programming 2 49

import java.util.*; 

public class MinMax { 

public static void main(String a[]){ // Creating List

ArrayList<Integer> list = new ArrayList<>();

list.add(32); list.add(45); list.add(66); list.add(22); 

list.add(10); list.add(54); 

System.out.println(list); // Sorting list

Collections.sort(list); // Displaying sorted list

int min = Collections.min(list); // Find max element

int max = Collections.max(list); // Displaying data

System.out.println("Minimum element : "+ min); 

System.out.println("Maximum element : "+ max);

System.out.println("Sorted List\n"+list); 

} 

}



Example: Finding min and max 
elements and sorting elements + code 
and output

Object Oriented Programming 2 50



Swapping Elements and reversing the 
list
Collections class provides built-in swap method that can be used to swap elements from one position to
another in a collection. The swap() method takes three arguments: First is reference of object, Second is
index of first elements and Third is index of second elements to be swapped. See the below example.

Collections class provides a static method reverse() that is used to get a collection in reverse order. In the
below example, we are getting list in reverse order using the reverse() method.

Object Oriented Programming 2 51

Collections.swap(list, 0, 4); // 10 is swapped with 32 in 

progam MinMax class.

System.out.println("List after swapping : "+ list);

Collections.reverse(list); 

System.out.println("List in reverse order "+list);



Swapping Elements and reversing 
the list+code

Object Oriented Programming 2 52

import java.util.*; 

public class swapReverse { 

public static void main(String a[]){ // Creating List

ArrayList<Integer> list = new ArrayList<>();

list.add(32); list.add(45); list.add(66); list.add(22); 

list.add(10); list.add(54); 

System.out.println("List before swap\n"+list); 

Collections.swap(list, 0, 4); 

System.out.println("List after swapping : "+ list);

Collections.sort(list); // Displaying sorted list

System.out.println("Sorted List\n"+list); 

Collections.reverse(list); 

System.out.println("List in reverse order "+list);

} }



Swapping Elements and reversing the 
list+code and output

Object Oriented Programming 2 53



Object Oriented Programming 2 54



Comparator Interface

Object Oriented Programming 2 55

In Java, Comparator interface is used to order(sort) the objects in the collection in your own
way. It gives you the ability to decide how elements will be sorted and stored within
collection and map.
Comparator Interface defines compare() method. This method has two parameters.
This method compares the two objects passed in the parameter. It returns 0 if two objects are
equal. It returns a positive value if object1 is greater than object2. Otherwise a negative value
is returned. The method can throw a ClassCastException if the type of object are not
compatible for comparison.



Rules for using Comparator interface

1.if you want to sort the elements of a collection, you need to implement Comparator
interface.

2.If you do not specify the type of the object in your Comparator interface, then, by default,
it assumes that you are going to sort the objects of type Object. Thus, when you override
the compare() method ,you will need to specify the type of the parameter as Object only.

3.If you want to sort the user-defined type elements, then while implementing the
Comparator interface, you need to specify the user-defined type generically. If you do not
specify the user-defined type while implementing the interface, then by default, it
assumes Object type and you will not be able to compare the user-defined type elements
in the collection

Object Oriented Programming 2 56



Rules for using Comparator interface

For Example

If you want to sort the elements according to roll number, defined inside 
the class Student, then while implementing the Comparator interface, you 
need to mention it generically as follows: 

Object Oriented Programming 2 57

class MyComparator implements Comparator<Student>{}

Then it assumes, by default, data type of the compare() method's parameter to be
Object, and hence you will not be able to compare the Student type(user-defined
type) objects.



Example program to compare 
objects

Object Oriented Programming 2 58

class Student{

int roll; 

String name; 

Student(int r,String n) { 

roll = r; 

name = n; 

} 

public String toString(){ 

return roll+" "+name; 

}

}

In this example, we will create three classes; Student, deCompare and CompareTest (with main method) 



Comparing two objects using compare() 
method of Comparator interface:
This class defines the comparison logic for Student class based on their roll. Student object 
will be sorted in ascending order of their roll.

Object Oriented Programming 2 59

import java.util.*;

class deCompare implements Comparator<Student> { 

public int compare(Student s1,Student s2) { 

if(s1.roll == s2.roll){ 

return 0; 

}

else if(s1.roll > s2.roll){ 

return 1;

}

else {return -1; }

} }



Comparation Execution using a class 
called CompareTest

Object Oriented Programming 2 60

Now let's create a execution class called CompareTest with main() function, to run 
the two classes above.

public class CompareTest { 

public static void main(String[] args) { 

TreeSet< Student> ts = new TreeSet< Student>(new

deCompare()); 

ts.add(new Student(100, "Amoit")); 

ts.add(new Student(300, "Caroline")); 

ts.add(new Student(200, "Solume")); 

System.out.println(ts); 

} 

}



Output
When roll numbers of two or more elements are the same, then one element will be omitted. 
However, when all elements are having unique roll numbers then all elements are outputted. 
This is because duplicates are not allowed here.

Object Oriented Programming 2 61

Note Dupplicated roll=100;
NO Dupplicate roll=100;



Important Note 

As you can see in the ouput, Student object are stored in ascending order of their roll.

Note:

1. When we are sorting elements in a collection using Comparator interface, we need to
pass the class object that implements Comparator interface.

2. To sort a TreeSet collection, this object needs to be passed in the constructor of TreeSet.

3. If any other collection, like ArrayList, was used, then we need to call sort method of
Collections class and pass the name of the collection and this object as a parameter.

For example, If the above program used ArrayList collection, the public class CompareTest
would be as follows:

Object Oriented Programming 2 62



Example of Sorting elements of other 
collection classes other than TreeSet e.g. 
ArrayList code

Object Oriented Programming 2 63

public class CompareArraySort { 

public static void main(String[] args) { 

ArrayList< Student> ts = new ArrayList< Student>(); 

ts.add(new Student(100, "Amoit")); 

ts.add(new Student(300, "Caroline")); 

ts.add(new Student(200, "Solume")); 

Collections.sort(ts,new deCompare()); /*passing the 

name of the ArrayList and the object of the class that 

implements Comparator in a predefined sort() method in 

Collections class*/

System.out.println(ts); 

} }



Example of Sorting elements of other collection 
classes other than TreeSet e.g. ArrayList code 
and output

Object Oriented Programming 2 64



Object Oriented Programming 2 65



Comparable Interface

Object Oriented Programming 2 66

is a member of collection framework which is used to compare objects and sort them 
according to the natural order.
The natural ordering refers to the behavior of compareTo() method which is defined 
into Comparable interface. Its sorting technique depends on the type of object used 
by the interface. If object type is string then it sorts it Lexicographically.
If object type is wrapper class object like: integer or list then it sorts according to 
their values.



Comparable Interface+

Object Oriented Programming 2 67

if object type is custom object like: user defined object then sorts according to the
defined compareTo() method.
Classes that implements this interface can be sorted automatically by
calling Collections.sort() method. Objects that implement this interface can be used as
keys in a sorted map or as elements in a sorted set, without the need to specify a
comprator.
Declaration

public interface Comparable<T>



Comparable Method

Object Oriented Programming 2 68

This interface contains single method compareTo() that is given below.
1. It compares object with the specified object for order.
2. compares the current object with the provided object. This function is already implemented

for default wrapper classes and primitive data types but, this method also needs to be
implemented for user-defined classes.

3. It returns positive integer, if the current object is greater than the provided object.
4. If the current object is less than the provided object then it returns negative integer.
5. If the current object is equal to the provided object then it returns zero.
6. This method returns NullPointerException, if the specified object is null

and ClassCastException if the specified object's type prevents it from being compared to this
object..



Example program for Sorting list

Object Oriented Programming 2 69

Lets take an example to sort an ArrayList that stores integer values. We are
using sort() method of Collections class that sort those object which implements
Comparable interface. Since integer wrapper class implements Comparable so we are
able to get sorted objects.



Example program for Sorting list+

Object Oriented Programming 2 70

import java.util.*; 

public class CompSorter { 

public static void main(String a[]){ // Creating List

ArrayList<Integer> list = new ArrayList<>();

list.add(32); list.add(45); list.add(66); 

list.add(22); list.add(10); list.add(54); 

// Displaying list

System.out.println(list); // Sorting list

Collections.sort(list); // Displaying sorted list

System.out.println("Sorted List\n"+list); 

} 

}



Example program for Sorting list+Code
and output

Object Oriented Programming 2 71



Assignment

Sorting String objects

1. While sorting string objects, the comparable sorts it lexicographically. It means a 
dictionary like sorting order. Write a program that will sort the following ArrayList
called lister.

Object Oriented Programming 2 72

lister.add("D"); lister.add("L"); 

lister.add("A"); lister.add("Z"); 

lister.add("C");



Assignment

2. Having realized that HashTable class does not allow either Null Key or Null 
values, Write a program that will attempt to insert null key and null value into 
a HashTable called ErrorT. Run the code to view the output.

3. Write a program that will be able traverse through a HashTable called NT 
containing the following elements. {A=10, B=34, C=34, KT=399} using for-
each- loop method.

Object Oriented Programming 2 73



Summary

1. Legacy Classes

2. HashTable Class,

3. Collection Class 

4. Comparable interface, 

5. Comparator Interface 

Object Oriented Programming 2 74



Object Oriented Programming 2 75

Thanks



References
Accessing a Java collection using iterators. Studytonight.com. (n.d.). Retrieved November 9, 2022, from
https://www.studytonight.com/java/iterator-in-collection.php
Java Collection Classes. Studytonight.com.(n.d.). Retrieved November 12, 2022, from
https://www.studytonight.com/java/collections-in-collection-framework.php
Java comparable interface. Studytonight.com. (n.d.). Retrieved November 12, 2022, from
https://www.studytonight.com/java/comparable-in-collection-framework.php
Comparator interface - java collections. Studytonight.com. (n.d.). Retrieved November 12, 2022, from
https://www.studytonight.com/java/comparators-interface-in-java.php
Legacy classes - java collections. Studytonight.com. (n.d.). Retrieved November 12, 2022, from
https://www.studytonight.com/java/legacy-classes-and-interface.php
Java Collection Framework Hashtable. Studytonight.com. (n.d.). Retrieved November 12, 2022, from
https://www.studytonight.com/java/hashtable-in-collection-framework.php
https://www.c-sharpcorner.com/article/legacy-classes-and-legacy-interface-of-collections-api/

Object Oriented Programming 2 76


