| 1 |
Lecture 1 -Basic concepts of probability theory
|
|
|
2022-02-25
|
| 2 |
Lecture 2 -Algebra of random events. Probability
|
|
|
2022-02-25
|
| 3 |
Lecture 3 -Full probability and Bayesian formulas
|
|
|
2022-02-25
|
| 4 |
Lecture 4 -Bernoulli's scheme
|
|
|
2022-02-25
|
| 5 |
Lecture 5 -Random variables. Distribution function. Density
|
|
|
2022-02-25
|
| 6 |
Lecture 6 -Numerical characteristics of random variables
|
|
|
2022-02-25
|
| 7 |
Lecture 7 -Discrete probability distributions
|
|
|
2022-02-25
|
| 8 |
Lecture 8 -Continuous probability distributions
|
|
|
2022-02-25
|
| 9 |
Lecture 9 -Characteristic functions
|
|
|
2022-02-25
|
| 10 |
Lecture 10 -Random vectors
|
|
|
2022-02-25
|
| 11 |
Lecture 11 -Independence of random variables. Covariance
|
|
|
2022-02-25
|
| 12 |
Lecture 12 -Conditional mathematical expectation
|
|
|
2022-02-25
|
| 13 |
Lecture 13 -Laws of large numbers
|
|
|
2022-02-25
|
| 14 |
Lecture 14 -Central limit theorem
|
|
|
2022-02-25
|